
EÖTVÖS LORAND UNIVERSITY

F IR S T S E M IN A R O N A R T IF IC IA L IN T E L L IG E N C E

January 23-24, 1989

Visegrád, Hungary

cr>
tn
m
T—1

Budapest, 1989

iTA I

EÖTVÖS LORÁND UNIVERSITY

F IR S T S E M IN A R ON A R T IF IC IA L IN T E L L IG E N C E

January 23-24, 1989

Visegrád, Hungary

Edited by I. Fekete and S. Nagy

Eötvös Loránd University

Department of General Computer Science

H-1117 Budapest, Bogdánfy u. 10/B

Budapest, 1989

Készült az ELTE Sokszorosítóüzemében
200 példányban

Felelős kiadó: Dr. Klinghammer István
Felelős vezető: Arató Tamás

ELTE 89349

FOREWORD

This book contains papers presented at the First Seminar

on Artificial Intelligence held 23-24. Januar-y, 1989, in

Vlsegrád, Hungary. This workshop was organi2ed by the

Department of General Computer Science of Eötvös Loránd

University, on the initiative of Frof. L. Varga, the head of

the department.

The importance and impact of artificial intelligence and

expert system applications shows a growing tendency in our

country, too. Even more efforts are made in searching

theoretical issues, as well as in developing systems and tools

for applications, and in elaborating and teaching educational

material for students. The research groups, however, seem to

be working a bit isolated. Thus the aim of the seminar was to

give an opportunity to scientists to meet, to get Information

about each other’s results, to excheinge ideas, and to

harmonize conflicting opinions.

It is hoped that the range of the contributions covers a

broad spectrum of artificial intelligence research and gives a

representative image of the results in Hungary. The

proceedings presented here and the lectures delivered at the

seminar are not completely the same, but the difference is not

significant.

Special thanks sire due to all lecturers, to the authors

of the articles, and to all participants of this scientific

meeting.

The Second Seminar on Artificial Intelligence is planed

to take place at the beginning of 1991.

Budapest, January, 1989.

The Editors

CONTENTS

Foreword

P. Ecsedi-Tóth, A. P. W&gner

FAIR, a Frame-based System Integrated with MPROLOG

B. Molnár, M. BEirbucezoiu

XRL: An Experimental Knowledge Engineering Tool for

Studying the Different Programming Peiradlgms in AI 21

L. Kiss, A. Farkas

FLC: An Experimental Language for Designing and

Implementing Frame-based Representation Features 31

D. Sima, D. Kotsis, L. Kutor, J. Tick

Remor and Reknel Based Knowledge Representation and

Manipulation 41

J. Aszalós

DDL and DDS: A Dialogue Design Lauiguage and System

for (PROLOG) Expert Systems 57

J. Rácz

NeurFrame: Simulating Neural Nets with MPROLOG 75

A. F2irkas, L. Kiss

Formality in Software Specifications 79

G. Csornai, G. Nádor, 0. Dalia

A Priori Information Support in the Classification

of Satellite Images

101

J. Farkasfalvy

Comparslon of Different Clzisslficatlon Methods Using

Landsat TM Data 111

I. Fekete, J. Farkasfalvy

Automatic Segmentation of Multispectral Digital Images 121

T. Ásványi

Declarative and Procedural Style of Logic Programming 127

T. Gregorios

Another Introduce to Consistent Algorithms 137

S. Nagy

Connection Between AND/OR Graphs and Simple Directed

Graphs 145

L. Izsó

Proposals for Design of Process Control Operators’

Computer Information Systems 153

L. Mérő

Connection Between AI and Cognitive Psychology 161

■í,y

F A I R . A F R A M E — B A S K Ü S Y S T E M
I N T E G R A T E D W I T H M B R O L O G

P. Bcsedl-Töth, A. Péter Hágner

Computer Research and Innovation Centre
Budapest, 1015, Donáti u. 35-46.

1. INTRODOCTIOS

1 . 1 Fim-Bisii) ssFitsimnoi oi iioiiuici

One of the most significant trends in modern expert system shell

developments is the useage of several knowledge representation

methods and programming paradigms [4],[2]. In the resulting hybrid

shells one may use, for example, some or all of the following

representation techniques: logic-based, rule-based, frame-based,

semantic nets, isomorphic (or direct) and procedural

representations. Two of these methods, namely, the rule-based (or

more generally, logic-based) and the frame-based ones seem to play

an outstanding role in representation tasks. We think that in a

modern expert system shell at least these two techniques must be

available. On the other hand, they seem to be sufficient, too: every

other (known) knowledge representation techniques cam easily be

obtained from these two ones. This belief is supported by

statistical data, too. For example, in [5] a statistical evaluation

is published on the Japanese expert system projects. According to

these statistics, more than 80-90 per cent of the expert systems

were developed by using these two basic representational forms.

Rule-based representation is relatively well-understood and can be

used with ease. Nevertheless, some problems arise if the number of

rules is large (above 1000), since the knowledge base containing the

rules is ill-structured. The frame-based approaches, on the other

hand, provide useful possibilities to structure the knowledge

appropriately. Indeed experiences show that building a system using

frames reduces the required time to two third of the time needed to

build the same system by rules. What is more, the measure of

relative reduction is increasing if the size of the system is

increasing. Frames are, however, basically static objects, and it is

not so easy to compile dynamic phenomena into frames. So ideally,

the two approaches, i.e. frames and rules should be used in an

integrated way. In fact we would like to describe here a particular

system FAIR (Frames in AX Representation of knowledge), which allows

the user to merge frames and rules in a flexible manner.

1.2 FMÍS ASO HPROLOG

If the knowledge is represented formally somehow, we want to

manipulate it. Most of the previously mentioned knowledge

representation methods have a dedicated paradigm which can be used

to put them into use. For example, logic-based and rule-based

representations are usually used by the so called "logic

programming" paradigm. A typical paradigm by which frame-based

knowledge can be put into work is known as "object-oriented"

programming. In object oriented programming one looks at a frame (or

"object") as a unit of some concepts and the algorithms which

manipulate these concepts, and uses a loose (called "blackboard") or

close (called "message passing") synchronization among the units.

Thus, when we want to integrate frames and rules, first we have to

find such programming paradigms which are appropriate for both

representations. Fortunately, a closer look on the problem indicates

that the connection between formal representation methods and their

"dedicated" paradigms are not so tig.ht as they looked at first

glance [1]. Indeed, our main aim here is to show that frames (and of

course rules) can be used together with the logic programming

paradigm.

In order to be specific, in our practical work we concretize these

notions somewhat: by rule-based representation of knowledge and its

dedicated manipulation paradigm "logic programming" we simply mean

the use of PROLOG programming (in particular, we use MPROLOG).

By incorporating frames into PROLOG we obtain two "orthogonal"

sublanguages which can be used in an arbitraryly merged manner: If

pure PROLOG is needed, then we can use it without any inconvenience,

and , on the other hand, if we wish to use frames only, then we can

do it without difficulties: moreover, we are completely free to

choose the point between the two extreme cases where our particular

problem will be solved.

We may start, for example, at the outermost level with an MPROLOG

program which uses some frames, then we can define these frames

which may contain again MPROLOG programs and so on. Of course we may

start from some frames and go inside by defining logic programs

(rules), too. Thus the proposed integrated language is very much

more expressive then a simple two-level language composed e.g. from

frames (resp. rules) in the outer level and from logic programs

(resp. frames) in the inner one because the two sublanguages can be

embedded into each other in an arbitrary depth.

1.3. TH FAIR

The heart of the FAIR system is an integrated representation

language. This language makes it possible to use several knowledge

representation methods such as frames, semantic nets, scripts,

graphs, and logic formulae, production rules, and procedural

Information (the latter three in MPROLOG). The integrated language

is supported by a dedicated user-friendly editor, or can be used in

line mode or with menus.

From the "programming paradigm" point of view the FAIR supports only

the logic programming. Nevertheless, the language of FAIR is very

easily extendible by other means among them by new manipulation

methods (i.e. by new paradigms). This flexibility and extendibility

are considered to be among the main advantages of the FAIR system.

In the next section we shall describe the frame-based sublanguage of

FAIR. The other sublanguage MPROLOG is assumed to be known (in fact,

familiarity with general properties of PROLOG-like languages, see

e.g.[3], is enough for understanding this paper; special properties

of MPROLOG are used here only in a transparent way).

2. THE FRAME LANGUAGE OF FAIR

Information is treated in FAIR on three different levels:

- the level of frames

- the level of frame structures

- the level of worlds.

In this section we shell discuss these levels in some details.

2 .1 . SUFLI FSáSIS

A frame is a structured abstract model of a concept. This model is

usually given by an unordered set of properties. These properties

are called slots; each slot represents an aspect of the concept

considered important from the point of view of the description. A

slot may have values; these values can be names of other frames or

expresBlona of some formal/computer language (tn our particular caee

of MPROLOG).

We note that eome parts of a frame can be omitted as is indicated by

the following general syntax:

frame: name;
[slot_l:i[value_ll,value_12,
[slot_2:[[value_21,value_22,

..,value_lni]];]

..,value_2n 2]J;]

end
[alot_m:[[value _ml,value_m2, ,value_mnrn]];]

Observe that the outermost and innermost brackets denote simply the

optional parts of the definition, while the brackets inbetween (in

boldface) are keywords and denote lists (in MPROLOG)'.

If a frame has only a name (and no slots or values are present) then

we call it 'primitive frame". If a frame has a name and some slots

but no values, then it is called a "generic frame". Finally, if

nothing is omitted, then we say it to be a "full frame".

Below we shall give some examples which illustrate these points.

true: poliioa;
ead

Iraie; rhoab;
baae:!];
alpha:!];

and

fraaa: rhoa'oj;
haea:[4EI]:
alpha:[30];
aiailar_to:(rhoahJ];

ead

Operationally frames are simply stored in a retrievable form in the

knowledge base. These manipulations can be carried out by using some

operations provided by the FAIR system. For example, the frame

called "rhomb" can be stored in the following manner:

create_frame(rhomb,base).
create_frame{rhomb,alpha).

(NOTICE. For the human user the FAIR provides a menu-based dedicated

editor for entering frames in a much more convenient way, than

described above. The above form has the advantage that it can be

used from programs, too.) ^

Assuming that the frame "rhomb_2" is stored in the form given above,

we may execute the predicate:

acces8_value(rhomb_2,baae,X).

As a result the value [40] will be returned in the variable X.

10

Among others, frames can be used in MPROLOG rules as abstract data

types. This kind of usage is supported by the predicate "Btrieve".

Actually, "Btrieve" is a combined "store and retrieve" (or more

precisely, "create and access"). The bound values given as

parameters of the strieve predicate will be stored in the frame

while the system will try to determine by inheritance, demon call or

else (see later) the values of all unbound variables in the argument

of the strieve. For example, consider the predicate

strieve(parallelogram(baee(B),side(S))).

The result of this predicate depends on whether B and S have a value

or not. The extreme cases are as follows:

- B, S have fixed values. Then these values will be stored

in the frame parallelogram, in the slots "base" and "side".

- B, S have no values. Then the system will try to access

the slots "base" and "side" in the frame "parallelogram".

2.2. Mm-IirO!ElIIOI

In order to cope with the intrinsic complexity of real world

concepts, additional information (called here "meta-information")

can be associated to the main parts of frames. Thus, we may

associate meta-information to frames themselves, to the slots or to

values. Accordingly, meta-information can be separated from the main

body of the original frame by the following keywords

meta_frame
meta_slot
meta_value

meta_end
meta_end
meta_end

The meta-information will also be coded by frames. Basically, there

are two ways to define frames holding meta-information: firstly the

user can give his/her own frame for this purpose and secondly the

user can fill-in a pre-fabricated frame tailored specially for

holding meta-information. These pre-fabricated frames may contain

information about

- demons or other activities concerning frames and slots

- constraints on the cardinality and range of the values of a

slot

- where a missing value can be obtained from; possibilities

include default values, inheritance from other frames or

asking prescribed questions from the user.

Inie: poljioii;
uib«rj){jt4fet:[];

Mtijlot: miiiarrJruc;
rufe:[},t,S,(.T,l,9];
delaaU:3;

Mtijeid
ud

If a value will be provided to the slot "number_of_edges" then the

system will check whether or not the offered value is in the given

range. For example, if we try to add 1 or 2 then the system will

reject the trial; on the other hand, 3 or 4 or more up to 9 will be

accepted.

An outstanding role is played by the demons associated to frames or

slots. In our geometric example, we shall also use some demons which

are sensitive to the access of a value of a particular slot. These

are called of type "lf_accessed_demon". For illustration, see the

following frames and UPBOLOG program:

(rue: etiluile;
elpki:t];

l(_ieeeaeed JeMi: [tlpki Jeioi];
Mtajnd

eid

(rue: ilpkaJeHi;
laj:detea;
aetÍTÍtT:[alpkajiet];

ead

For the sake of illustration, consider the following frame:

alpkajiet:-
aeeesajahe (lork, (rue jiue, [f I]),
aece8a_Talae(ll,auberj>l_ed|es,|lj),
I la U«-36« dir I,
createJraie{eiaiaaile,alpka,I ,orerirlte).

We see that the slot "alpha" in the frame "equiangle" has an

associated "if_accessed_demon" with name “alpha_demon". If a trial

is made to access the slot "alpha" in this frame, the demon will be

activated (after the trial, but before the value (if exists) is

returned; this is the default way of invocation of an

"lf_accessed_demon" which can be modified if necessary). The demon

itself is defined in two steps; first we filled-in the pre

fabricated standard frame devoted to defining demons and second, we

defined the activity to be carried out by the demon as an MPROLOG

program. According to these definitions, the demon, when activated.

12

Hill read out the value of the slot "frame_iiame" from the frame

"work" and then it reads out the value N of the slot

"number_of_edges" from the frame with name just retrieved from

"work"; then the value of E will be computed by dividing 360 by N

and retracting the result from 180; finally the value of E will

overwrite the old value (if any) of the slot "alpha" in the frame

"equiangle".

Physically we may give meta-information in two ways;

Firstly, we may use the editor of FAIR and write frames as in the

example above. Then the system will automatically associate the

meta-information in "alpha_demon" to the slot "alpha" in

"equiangle" .

Secondly, we may define the frame holding the meta-information

separately from the frame to which it is to be associated and then

we may use the associate predicate in line-mode or from a menu in

order to manipulate the things. For example, we may define the

frames

Iriie; equiaifle;

etd

íme: alphaJeioB;
laj.'leioa;
actlTltT:[alpha_act];

ewt

and then we may use the predicate

associate(equiangle,alpha,alpha_demon).

to connect the two frames. Disconnection of the meta-information is

carried out in each case by the predicate dissociate. For example,

we may use

dissociate(equiangle,aIpha,alpha_demon).

in order to destroy the connection between the frames "equiangle"

and "alpha_demon".

2 . 3 . BILITIOIS

As concepts modelled by frames can be connected somehow, we may want

to define relations among frames. In FAIR there exists two kinds of

relations:

- Relations known to the system by default

- Relations defined by the user.

13

Once a relation has been defined, its name can be used as a slot in

the frame to be connected to another, while the value of this slot

identifies the frame to which we want to connect our particular one.

The FAIR system Knows about two relations, namely the "is_a" and the

"instance_of" relations. Actually, these two relations are treated

by FAIR in the same way. Intuitively, however, we may use "is_a" as

the familiar "subset” relation and "instance_of" as the "membership"

relation of set theory.

Oser can define also relations by filling-in a pre-fabricated

generic frame called "standard_relation" :

fraii: staidardjeliUon;
doiaia:[]:
raa|e:[];
iatetae:!];
deioa:[];
lakeritaacerd;

aad

The slots "domain" and "range" define the first and second argument

of the relation. (Observe, that F.AIR supports only binary relations.

Onary relations and relations with more than two arguments can be

implemented by binary relations easily.) In the "inverse" slot we

may specify the name of the inverse relation (the inverse is meant

to be the total inverse; this will be defined automatically together

with the original relation). Demons can be associated to relations,

too, in the slot "demon". Finally, the value of the slot

"inheritance" specifies the information which is allowed to pass

along the relation. We shall discuss the possibility of controlling

inheritance later.

If we fill-in this pre-fabricated frame we must add the slot "is_a"

with the value "[relation]". To illustrate the point we define the

relation "similar_to" needed in the geometry example:

{me: tlillarjo;
ÍM:[reUUoa];
iiTerse;[iiiiUr_toI:
lüerlUice: [tiilUrit; JakerUaic:];

eid

Notice that the slots "domain" and "range" are omitted here: the

FAIR system will apply the default values "all", i.e. the relation

"similar_to" can be used between arbitrary frames in the knowledge

base. In the case of "demon" slot, on the other hand, the system

14

2 .4 . IimiTálCI

Relations defined among frames allow transfer of information from

one frame to another. This mechanism makes it possible to store

every piece of information at the most appropriate place.

In the FAIR system, inheritance may be controlled in two different

ways;

- Local control can modify the inheritance of a slot by

specifying the way how the slot may inherit information

from other places and the way how the slot can be

inherited by other places

- Global control can modify the inheritance along a

particular relation

The information needed to control inheritance will be given in pre

fabricated frames.

The frame specifying local control can be filled-in by the user; if

it is filled in, its name must be given in the meta-information

associated to the slot (the inheritance of which is to be

controlled). Actually, we may forbid the inheritance of the (value

of the) slot or may determine the strategy of search for the next

candidate (from which the lacking information will be tried to

inherit) and finally we may give “hints" for the inheritance

mechanism.

The global control of inheritance affects the information which may

pass along a relation. The necessary information is given in the

following frames:

friii: staiid9cd_riliUoiJiikerUiice;
«xehdedjloU;[];
ei_coadiUait:n;
Uehdedjlcte:|l;
UjoidUlontn;

end

The user may fill in this frame; then its name can be given as the

value of the "inheritance" slot in the defining frame of the

relation to be controlled.

The value of the slot "excluded_slots" (resp. "included_slot8") can

be a list of slot names. The specified slots will be excluded

(included) when inheritance takes place if the appropriate

conditions given in the "condition" slot hold, otherwise the

will do nothing since this is the default. The inheritance

specification will be explained below.

1 5

Once a relation has been defined, its name can be used as a slot in

the frame to be connected to another, while the value of this slot

identifies the frame to which we want to connect our particular one.

The FAIR system knows about two relations, namely the "is_a" and the

"instance_of" relations. Actually, these two relations are treated

by FAIR in the same way. Intuitively, however, we may use "is_a" as

the familiar "subset” relation and "instance_of" as the "membership"

relation of set theory.

User can define also relations by filling-in a pre-fabricated

generic frame called "standard_relation”:

Ira ii: itaDdard_reUtioa;
doiaÍE:[];
raue:(];
iiTerae:[]:
deiOD:[];
iakerUaoce;[];

etd

The slots "domain" and "range" define the first and second argument

of the relation. (Observe, that F.AIR supports only binary relations.

Unary relations and relations with more than two arguments can be

implemented by binary relations easily.) In the "inverse" slot we

may specify the name of the inverse relation (the inverse is meant

to be the total inverse; this will be defined automatically together

with the original relation). Demons can be associated to relations,

too, in the slot "demon". Finally, the value of the slot

"inheritance" specifies the information which is allowed to pass

along the relation. We shall discuss the possibility of controlling

inheritance later.

If we fill-in this pre-fabricated frame we must add the slot "is_a"

with the value "[relation]". To illustrate the point we define the

relation "similar_to" needed in the geometry example:

true: li iil tr . to ;
itj:(reUUot];

Ukeritaaci: [s U ila r it jJ ilie riU a ce l;
aid

Notice that the slots "domain" and "range" are omitted here: the

FAIR system will apply the default values "all", i.e. the relation

■’similar_to" can be used between arbitrary frames in the knowledge

base. In the case of "demon" slot, on the other hand, the system

14

2 .4 . iniRITlICI

Relations defined among frames allow transfer of information from

one frame to another. This mechanism makes it possible to store

every piece of information at the most appropriate place.

In the FAIR system, inheritance may be controlled in two different

ways;

- Local control can modify the inheritance of a slot by

specifying the way how the slot may inherit information

from other places and the way how the slot can be

inherited by other places

- Global control can modify the inheritance along a

particular relation

The information needed to control inheritance will be given in pre

fabricated frames.

The frame specifying local control can be filled-in by the user; if

it is filled in, its name must be given in the meta-information

associated to the slot (the inheritance of which is to be

controlled). Actually, we may forbid the inheritance of the (value

of the) slot or may determine the strategy of search for the next

candidate (from which the lacking information will be tried to

inherit) and finally we may give "hints" for the inheritance

mechanism.

The global control of inheritance affects the information which may

pass along a relation. The necessary information is given in the

following frames;

true: itudard^e litioiJiReritaece;
eichdedjlott:[];
eij:oadUioii:n:
Uchdedjlcti;(];
ü jo id it lo a :[];

ead

The user may fill in this frame; then its name can be given as the

value of the "inheritance" slot in the defining frame of the

relation to be controlled.

The value of the slot "excluded_slota“ (resp. "included_slota") can

be a list of slot names. The specified slots will be excluded

(included) when inheritance takes place if the appropriate

conditions given in the "condition" slot hold, otherwise the

will do nothing since this is the default. The inheritance

specification will be explained below.

15

specification will be ignored by the system. Conflicts arising in

this way will be resolved in FAIR by assuming that "exclusion" has

greater priority.

For illustration consider the relation "similar_to", defined in our

geometry example and the specification of inheritance along this

relation:

trsie: iiiihrU;Jiketitaice;
laclDde01oti:[alpha];

eid

According to this specification the slot "alpha” and its value (and

nothing else) can be inherited along the relation "sim__ilat;_to",..

2.5. WORLDS

Concepts of real world can be described from many different points

of view. Frame-based systems usually supports this kind of gouping.

In fact, FAIR also gives the possibility to partition frames into

groups; these groups are called "worlds" in FAIR.

A world is simply a set of frames; all mechanisms (including

inheritance) will always work inside a world.

Worlds can be connected to each other; the structure of worlds is a

(rooted) tree. After initialisation the root will be automatically

created. Then the user may define new worlds and may arrange them

into the tree of worlds.

Worlds can be manipulated by fixed predicates. For example, the

geometry example is described by means of one world called

"geometry". This world can be defined as follows:

create_world(geometry,root,none).

As a result the world "geometry" will be defined as a son of the

world "root", and will be leaved empty (i.e. none will be put into

the new world automatically). In more advanced applications the user

may define a new world and may specify what frames should be put

from the ancestors to the newborn.

Navigation on the tree of worlds is possible by the "focus"

predicate. For example, after executing

focus(geometry).

the actual world will be "geometry".

16

For technical reasons, FAIR will open two other worlds "rel_world"

and "demon_world" immediately after initialisation. These worlds

will be used to contain all relations and all demons, respectively.

Worlds can be used for several purposes; for example it can be

applied to simulate time dependency or to handle alternate

hypotheses.

3. CONCLOSIONS

In this paper we described in some details the frame-language of the

FAIR system. It should be stressed, however, that this frame-

language is only one axis in the reresentation space of FAIR. The

other component, the logic-based (rule-based) language, can be

considered as "orthogonal" to the first one. Since the two

components can be merged in an arbitrary way, the expressive power

of the integrated language is very high.

The basic features of the integrated language of FAIR are as

follows:

Simple, and natural syntax

Meta-information associated to parts of frames

demons, constraints, default e.t.c.

Oser-definable relations

Control of inheritance

Horn-clause programming

Structurability

REFERENCES

[1] Ait-Kaci,H., Nasr,R., LOGIN: A Logic Programming Language with
Built-In Inheritance, J .Log.Prog., 3,(1986), 185-215.

[2] Brachman.R.J., Fikes,R.S., Levesque,H.J., KRYPTON: A Functional
Approach to Knowledge Representation, Comput. 16 (10) (1983),67-74.

[3] Clocksin,W., Mellish,C., Programming in PROLOG, Springer Verlag,
(1981)

[4] Harmon,?., King,D., Expert Systems, Wiley and Son (1985)

[5] Results of Survey on Trends in Expert Systems in Japan, Future
Generations Computer Systems 3 (1987), 17-36.

IFfiniI (« fu illír eiuple tar eoipatiif arca and
periieter ot paralleloitaia)

intet

lorld: iMietrr;

fraie: poljioa;
ead

fraie; tatrafoa;
ll_|:polr|oa;
iQil)«rjf_8díe8:[4];

esd

true: etalaaile;
>lpka:[];

ietajlot:alta_ieta;
it deceased Jeioi: [altajeioi];

ieta_ead
ead

traie: eioiliae;
property :[eqaUiae]:

ead

traae: parallelofiaa;
laja:[tetia|oa];
area:[];

aetajlot:areajeta;
it jcceaaed Jeaoa: [area Jeaoaf c];

Ktajead
periaeter:[];

Ktajiot.'periaeterjeta;
it jcceaeedjieaoa; [periaeterjeaoa];

aeta_ead
liei|lit:n;

Mtajiiot:kei(ht_aeta;
it_acceeeed Jeaoa: [Keiihtjeaoa];

letajead
aide:(];

Ktajlot:aidejeta;
it jicceeaedjeioa: [aide Jeaoa];

Mta_ead
l>aee:[];

ead

traae: rectuiie;
iaj:(paralleio(ru,eqniu|ie];

ead

true: rectaafiej;
baae:[40];
alde:[i01;
iaatuce_ot: [rectuiie];

ead

traie: rboab;
laji:(paraileio|tu,eqailiae]:

ead

traae: rboabj;
iutuce_ot:[rboab];
bue:[i2]i
alta:[3i];

ead

true: rboabj;
iutucej)t:[rboab];
8Íaliar_to:[rboabJ];
bue:[tí];

ead

trau: aqaare;
iaji:[reetaafie,rboib]:

ead

true: aquarej;
iaatuce_ot:(sqaare];
baae:[i0];

ead

true: aecua;
30:[i];
30:[2];

ead

traae: loaijeo; '
coaditioa:[];
actÍTity:[jobjeo];

ead

true: diaioijeo;
traaejaae:[];

aetajlot'.qoeatioaJorJrjiaae:
it_acceaaed Jeaoa: [tr Jeaoa];

aeta.ead
e iotjue:[];

aeta j iot: qoeatioa Jor j 1 jaae;
it_acceaaed Jeaoa: [a 1 Jeaoa];

aeta_ead
ead

true: lork;
aiotjiue:]];
traaejiaae:[]:

ead

iorid.ead.

eorld: reijorid;

traae: aiaiiar.to;
iaj:[reiatioa];
iaberitaace:[aiaiiarityjab];
iayerBe:[8iailar_to];

ead

18

friK: sUüuitTjik;
Uc Uded j lo ti: [ilpha];

etd

iMm(T)
T:[], R ite C ir i mble to uiier loir
qoettloi.'),
i l ;
iTÍte(T), frlteC Ue u tie t.‘), >1 .

Mtldjid.

Mrld: dOKijorld;

true: IrJeMt;
llj:[deM i];
ictlTltT:[frjct];

end

triH: sijeion;
iij:[dem];
«ctlTÍtj;[nl_»ct];

end

true: ilft je io i;
iij:[deioi];
Mtiiitr:Celtajct];

ead

true: ateaJeMa;
ie.a;[deioa];
actlTltj'.tareajct];

end

sidejict
accesn_Taiae|iorl,fruejiaK,[n]],
acceae_»ahe(fl, property,[I]),
I:*eqnllUe‘ , accenn.ralnedl.base.IB]),
atrieTe(paraÍleio|ru(baee(B),nide(B))j .

beUbtjct
accese_7alae(iott, true jeae, [FI]),
5tnctire(F!l,list,[FI,aitaU|,]ide(Slj),
striere(Fll),
accese_Tahe(5ecus,l,[SIC|), 1 Is S dir SIC,
strieTe(paraUeloiru(belibt(l),side[S)|) .

area_act
access_Taiae(iorl, true ju e , [Fill,
access_iahe(FI,base,[Bl),
accesB_TaUe(FI,bei(ht,[I]), i is l<fi,
cresteJrue(pariUeloiru.irea,l,‘ o'). t .

alíajct
iccess.ralneínort. true jiue, [FI]),
acees8_Tahe(FI. aniber jt.edpes,[!]),
I is liB-SSI dl? i,
creeteJrue(eqniaB|le,alta,I,"o'), ♦ .

true: perlaeterjeaoa;
isj:[denonl;
actifity:[periaeter.act]:

end

true: sidejeaon;
laj:[deKB];
aetlyity:[slde_act];

end

true: beiibtjeaoa:
lsj;[deaoa];
actlTlty:[belibt_act];

end

lorldjad.

glOLflS-nilea

periieter_act :-
accs5S_Tahe(nork,ttanejiane,[FI]),
a«ess_»ahe(FI, base, [B]),
access.TaUe{!l,8ide,[S]), P is 2<(SfB),
createJtane(parailelo|raa,periletet,P.'o"), * ,

tr_ict :-
i l , iriteCInter tbe truejaie !'), al, read(FI),
reid_toben(expres8ioi end), cntjnpnt,
create Jtuel dialotjeo, traie jiaie, FI, 'orenrite')

s ljc t :-
ni, eriteCInter tbe slotjiue!'), ni, read(SI),
read.tolenCeipression end), cit_inpnt,
create Jtaie(dialo|_íeo,siót jaie,H,'oyenrite').

Jobjeo :-
access _ya Ine (diaioijeo, true jiaae, [FI]),
access .raine (dialouee, s iot jaae, [Sl]),
atrieiel torki tra ie jue (ll), Slot jaie(SI))) ■
aece8sjralne(FI,SI,l),tisier(T) .

19

Irm meet

> {oca»(geotetrr)
* tocis

> m iio a lje o)

> jobjeo

> »ccejs_t«he(d ia lo íjao , f tu e ja ie , Í I)
> fr je ioa

♦ acceaa.Take
> acceaa.Talue (dialogjeo, s lo tjia ie ,31)

> a lje ioa

♦ acceaa_Tal»e
> 8trieTe(jorl[(fraiajiaie(fS),

aiotjiaie(SII)))
t Btrieae
) acceaa.TahelrhoibJ.area,?)

«» labaritaace of area
> acceaajralaelrboab.area,?)
> acce3s_Talia(paraUelograi,area,f)
» if_acce8Bedj!ioa
> acce8B.Talat(rboibJ,bas:,B)
t accíss.aaiae
> acce88_7aloe(rboibJ,beigbt,I)

*< iabtritaace of beigbt
> acceBs.falueltboab,beigbt,!)
> accesB_Taliie(paraUelograi,beigbt,3)

»» if_acce88edjieioa
> Btrieee(tboab_2(alfa(i),8ide(S)))

« laberitance of alfa
> acces8_talae(rboib,alfa,i)
> acoes8.falae(parallelograi,alfa,i)
> aoce38_Tahe(tetragoB,alfa,i)
- acceaa.Talae

- acceaa.aahe
- acce88_7alae
> accee8_Talae(tboibJ,alfa,i)
♦ accesa.Take

tt laberitance of elde

»» if_tcce88ed_deion
»* inberitaace of propertp

+ atrieíe
> acce88.Tahe(8ecaa8,30,SSC)
+ accesa.aalüe
> 8trieTe(patallelograi(beigbt(10),

slde(20)))
t Btrieie

♦ acceB8_7alue(rboabj, beigbt, [10])

7 acceea.ealaelrboabj,area,[200])
> aa8ier([200])
7

7 jobjeo
7 roa(goaljeo)

r i : rboibj.

31 : area.

2 0 ,

i : 30.

3 : 2 0 .

SIC : 2,
a : 10.

area : 200.

20

I

XRL: An experimental knowledge engineering tool
for studying the

different programming paradigms in AI

t

Balint Molnár
Central Research Institute for Physics,

Advanced Systems Department,
H-1525 Budapest 114, P.O.B. 49 HUNGARY

Mihai Barbuceanu
Institute for Computers and Informatics,
8-10 Miciurin, 71316 Bucharest 1 ROMANIA

I. Introduction

We would like to present a short overlooking of the XRL
systems originally developed in Romania by M. Barbuceanu and
his team. This system was implemented in a special dialect of
LISP running on PDP-11 compatible machines. We combined our
efforts and tried to port the existing system to a VAX
compatible machine in order to exploit the standardized Common
Lisp and the 32 bits architecture. As the time passed the XRL
incorporated more and more interesting features and provided
for uncountable important experiences validating the
theoretical ideas. After having successfully ported to VAX
compatible machines we began to work out a User's Manual and a
Language Reference Manual and this work is in progress.

The XRL architecture shows some interesting properties
e.g. the evolutionary self-enhancement and -developing
philosophy of the system which is only an application of the
four important aims promoted by the research. Namely, we would
like to realize the next features:

- abstraction
- vividness
- declarativity
- enhancement.

Our main purpose is to develop an appropriate
architecture supporting the above mentioned features. As it
can be seen these requirements need a hybrid architecture in
order to integrate many distinct paradigms. Moreover, the
architecture should be able to evolve making sure that the
system itself can be modified by using its own knowledge
engineering tools i.e. the organization of the system should
be reflexive.

XRL is a hybrid multi-layer architecture in which lower
level tools such as structured objects, production rules or
Prolog are cc itained in the lowest layer. The middle level
tools represents already an XRL specific layer including
concurrent refinement of structured object and set oriented
refinement. The upper layer incorporates the XRL specific
approach to the construction and enhancement of knowledge
processing tools or domain models, the self generation tool at

21

this level plays an important role extending the XRL network
edsilities relating to the structured objects and to the
knowledge processors and applies the policy of XRL to itself,
to its own structure.

II. The outline of the XRL architecture

Upper Layer

Fig. 1. The architecture of XRL

The figure 1. shows a structural diagram of XRL giving an
overview about the important component of the system, the
original illustration can be found in [Barbuceanu et al. 88].
We would like to explain here - only in rough details- these
parts of the system.

22

1. The low laver

The low layer has the -so called- structured object
substratum that contains the XRL structured objects being
similar to the widely known frame concept in AI, or to the
objects in the different object-oriented programming paradigms
but they have a lot of specific and very advanced properties.

We can summarize the traditional attributes of the
structured objects as the following:

(1) multiple inheritance
(2) meta-objects
(3) message passing with method combination
(4) active data (triggers)

As new aspects of the structured objects can be considered:

(1) the extended method combination abilities - XRL
can combine the inherited methods as well as methods
from the same lexical context
(2) the definition of XRL types for consistency
checking and associative retrieval
(3) the special language defined for accessing the
element of network consisting of structured objects
(4) ADT or abstract data type facility showing the
relation between XRL and object-oriented philosophy
and in addition providing for system interfacing and
data handling capabilities

An example showing the most important character of the
structured object in XRL - called unit here - will be
presented:

[unit MyPreferredCar
self [a *Unit supers (Car)

describe DescribeCar
draw DrawCar]

colour silver
engine [a TurboEngine]
passenger [a Nice Girl]]

[a ‘Slot*
chat-about ChooseSubject]

-the self slot holds the
-unit meta description
-specifying inheritance
-(slot supers) and message
-selectors with methods
-(slots describeand draw)
-slots may also have meta
-descriptions holding
-selectors with methods

This example contains illustrations for descriptors such
as "a Turbo Engine" or "a Nice Girl" that define ("describe")
-in set theoretical sense- a set or subset of the certain
general concept. In XRL, it is a notable notion that the set
of the descriptors is not a predestined and unchangeable part
of the system,however it can be flexible extended. The
refinement semantics is strongly connected to the descriptors
about which we will argue a little bit later.

A significant language peculiarity has been established
for the XRL structured object network access, namely, a
predicate testing the "is-a" relation between the units.

.23

-watch if a is-a b

(defpath ISA (a b)
(prog(sups)
(and(same-unit a b) (succeed t))
(start a)
(setq sups (step self supers))

(cond ((memq b sups)(succeed t))
(sups(apply 'split

(mapcar '(lambda (x)
(list 'isa X b))

sups)))
(t (fail)))))

-succeed if a same as b
-start from a
-get the straightforward
-supers
-succeed if b is among
-them. Else split the is-a
-path recursively on each
-of them
-fail if no
-straightforward supers

The primitives of the access language used are the subsequent:

start - sets the starting point of the path

step - steps one or more slots from the current instance

split - treats several paths in parallel returning the
result of the first successful

succeed - returns from a successful path

fail - returns from a failed path.

As the above described illustrations shows, we can define
-in the same manner- XRL types and ADTs (abstract data type).
Who are interested in more details we can recommend them the
next publications [Barbuceanu et al. 88], [Barbuceanu et al.
87].

In the existent Al (hybrid) systems, the production rules
plays an important role providing for a simple tool acquiring
a basic knowledge base pretty quickly. Because of this reason
XRL contains a subsystem implementing the production rules and
its interpreters. In despite of the simple rule based systems
where the mechanism of the interpreters cannot be altered,
here in XRL, the rule interpreters can be specified
harmonising to the given domain (or model). The rules and as
well as the rule interpreters represented in the same
structured object format presented above.

The rule interpreters supply a message passing interface
awarding the compilation and activation of the rule
interpreters, this protocol allows the compilation, matching
and application of rule. The rule interpreters permit several
control strategies. Some are very simple, like "fire all rules
once" or "finish after first successful firing". More complex
ones use conflict resolution criteria (programmer or system
supplied). Finally, an implementation of procedural production
systems is also provided [Georgoff 86].

We present an example to illustrate the main ideas of the
rule interpreters.

24

[unit Ruleinterp-i
self [a RuleInterpMeta]

args (delta)
vars ((temp -5)

(state frozen)
rule-args (temp state)
normal-rules (R1 R2 R3 ...)
init-rules (R-report)
term-rules (R-report)
start-rules (R-incr-temp-delta)
control agenda
conflict-res best]

-the meta unit RuleInterpMeta
-provides the message
-protocol
-lambda arguments of the RI
-initialized local variables

^arguments sent to the rules
-simulation rules
-status reporting rule

-increment temp with delta
-use conflict resolution
-take "best" matching rule

The rule interpreter contains several rules that it
controls, e.g.,there exists initialization rules which are
carried out when the rule interpreter is activated, there
exists termination rules on exiting from the rule interpreter,
there exists normal rules which the formulated control
strategy is applied for, start cycle and end cycle rules are
triggered before and after each normal rule activation cycle.
Procedural interpreters, which do not work in the usual
match-solve-conflict-execute cycle have special slots
describing the transition network which supervises the rule
activation.

In addition to the above described rule-based subsystem,
there does exist a Prolog architecture possessing the
well-known backward chaining philosophy using Horn clauses
implemented in the XRL object oriented manner. Prolog programs
can access the object data base through the mechanism provided
by the structured object language (invoked as function calls).
The XRL involves such features as the above mentioned paths
and associative retrieval, these are especially powerful and
have replaced the need for a previous interface which treated
structured objects as relational tuples (a method used in SRL
[Wright and Fox 84]).

Constraints - in the sense of [Sussman and Steele 80] -
appear as an independent XRL tool that can use the same
general structured object and message passing mechanisms
illuminated for the other tools. This tool allows the
simultaneous use of several constraint networks. For each such
network, there exists an object which describes the component
constraints and their inter-connection and provides the
message passing interface allowing the use of the network.
This interface provides messages for network creation, setting
initial values, value propagation, incremental value
modification and instrumentation. Each constraint in part is
represented as an XRL unit with slots for the value cells and
for the value computation specification and with message types
for activating value computation and handling conflicting
situations.

Regarding the ATMS [deKleer 86a 86b 86c], it will be used
in conjunction with the other XRL tools as a sophisticated
cache which is able to avoid duplication of the problem
solving effort. The ATMS is not implemented in the object
oriented style due to both efficiency reasons and to the fact
that we consider it as a tool of this substratum (like the

25

structured object language) which must be more stable than the
higher level ones.

2. The middle layer

A powerful and widely used mechanism for bringing to bear
the)cnowledge encoded in structured objects is instantiation,
a procedure by which the knowledge contained in a generic
object is employed to the construction of a similarly
structured terminal object. In spite of the ubiquitous
occurrence of instantiation in frame systems, few languages
support explicitly this process. One of these rare case is
LOOPS [Bobrow and Stefik 81] with its composite object, but
even here only a rigid recursive mechanism is provided.

The middle layer of XRL delivers two tools that implement
the frame instantiation. The formalized instantiaton process
is called refinement. The first tool is based on interpreting
structured objects as specifications of loosely coupled
concurrent refinement processes, each process producing an
instance of its generic unit. The second introduces a set
theoretic language of descriptions which extends the
structured object language, axiomatic the instantiation of the
emerging notion of structured object and provides the
machinery to implement the new instantiation concept on top of
the former concurrent refinement tool.

The concurrent refinement system deals with the
computational processes by which a structured generic object
can be transformed into an instance of itself. For example, an
instance of MyPreferredCar will have in the engine slot,
instead of the initial generic unit TurboEngine, a more
refined specialized instance of it such as:

[a TurboEngine
power 120
#cylinders 6
#speeds 5].

This more refined (but not necessarily terminal) instance
can be obtained by several computational processes. For
example, one can take the TurboEngine unit and attempt to
refine each of its slots. Alternatively, one can search in the
knowledge base for a more refined instance of TurboEngine and
place it in the engine slot. The first refinement process may
be called expanding (the TurboEngine unit) and the second
anchoring (the TurboEngine unit to an existing instance of
it) .

The concurrent refinement tool provides a framework for
declaratively specifying and carrying out refinement processes
of the above kinds. An essential aspect of the framework is
that it allows several refinement processes to run in
parallel. The issues of communication and synchronization are
resolved by special primitives provided by the framework.

1) Refinement tasks. Any XRL structure to be refined is
associated to a task by the framework. As an extension of the
concept, beside units, arbitrary evaluable expressions can be
also placed in slots and refined by evaluation.

26

2) System organization. The framework promotes the
organization of the refinement processes into refinement
systems.

3) Communication and synchronization. Conceptually, tasks
not explicitly scheduled, however, are executed in parallel.
Communication and synchronization are achieved by a form of
communicating sequential processes which extends the path
construct from the structured object level.

4) Control regimes. Beside the refinement described
previously, other control regimes are supported. A form of
dependency driven undoing allows the programmer to selectively
modify a refinement network and to trace all affected slots.

The above outlined refinement process can be also seen as
a process of incremental elimination of uncertainty.
Initially, one knows that the engine slot will contain a
TurboEngine, but there is a whole class of such engines which
are implied by this description. Further refinement reduces
this class to those with power=120, then to those also having
5 speeds, a.s.o. The process stops when the remaining level of
uncertainty becomes acceptable.

The set oriented refinement tool formalizes the rules of
this method. It extends the structured object language by
maintaining descriptions formed with set operations (union,
intersection and difference), - the someof constructor and the
oneof extractor -, it provides a formal semantics of the
resulting language based on the conception of description
extension and it extends the concurrent refinement machinery
to perform refinement specified in this manner. The foirmal
semantics of the set language (called SODL) is described in
[Barbuceanu et al. 87 and 88], the idea being somewhat similar
to [Brachman and Levesque 84].

We have used these notions of refinement in several
applications in design, planning and simulation and diagnosis.
The experience we accumulated shows that refinement is an
appropriate middle level allowing efficient implementation of
several types of problem solving activities. Two such types of
our experience show that can be fully and easily implemented
are those described by [Chandrasekaran 86] as hierarchical
classification and hierarchical design [Barbuceanu 85].

Considering the distinction made by [Clancey 85] between
classification -in which the solution is one from a pre
existent enumeration and construction (where no such
enumeration exists)- refinement appears as a good mechanism
for the latter. This stems from the fact that refinement works
by assembling partially specified pieces into higher order
aggregates which do not have to be known in advance.

3. The upper level

The explanatory knowledge processor construction and
enhancement endorses the construction and enhancement of a
wide range of such processors, from low level domain
independent ones such as production rule systems, to middle
level ones such as the concurrent refinement one and further
to task level ones such as design systems. We call all these
sorts of processors domain models.

27

The theory and tools to be discussed in the next short
section assume a certain characterization of domain models.
From a representational point of view, they are assumed to be
structured object languages characterized by certain
vocabularies of slots and object types, together with an
interpreter that is able to process the types of structured
objects and slots defining the language. The next figure
depicts this acceptance of the term.

Structured object Interpreter, consisting
language defined by; <--- of:
- a vocabulary of slots - procedures which
- a collection of object interpret slots and

types ----------- > objects in the model

The object oriented nature of domain models hides in fact
a commitment to data-driven programming. The approach appears
to be suitable ,to data-driven programming where relevant
parameters of the programs are explicitly represented and
accessible as data structures with possibly procedural
annotations. .The exact reasons for this will become clear
later on.

The approach consists of two main steps. The first step
uses: (1) a prototype version of the model, (2) a number of
parameters of the model, (3) explicit specifications of the
assumptions made about these parameters.

The parameters and assumptions, we can call them together
explanatory structures, can be extracted from a data base
which holds programmer defined or system derived explanatory
structures. These elements form the base for re-formulating
the model in a form suitable for the second step. Essentially,
this form is functionally equivalent but it explicitly
represents the dependencies between assumptions, parameters
and the content of the model. These dependencies show how
parts of the model depend on given assumptions and parameters.'-

The second step uses the re-formulated model as a base
for a number of "semantic editing" activities which modify the
assumption and/or parameters and propagate the effects of
these modification on the model. The result is the production
of the new models which work under the modified assumptions
and/or parameters. A second result is the production of new
explanatory structures from modifying the previous ones. These
are archived in the explanatory structures data base. Semantic
editing activities are possible because the re-formulated - or
explained - form of the model explicitly links the relevant
assumptions and parameters to the parts of the model which
depend on them.

4.Remarks

Because of the lack of the space, we cannot go into
further details, but both of the authors would send - with
pleasure - a copy of the above mentioned reports about this
topic to whom are interested in this theme and would ask us
for a specimen.

28

References

10

11

Barbuceanu, M. (1985) An object centred framework for
expert systems in CAD, in J.S.Gero (ed.)/ Knowledge
engineering in CAD, North Holland 1985, 232-253.

Barbuceanu, M. , Trausan-Matu, S., Molnár, B. (1987)
Integrating declarative knowledge programming styles
and tools for building expert systems and their
applications, Proc.Vth International Workshop Expert
Systems and Their Applications, Avignon, France 1987,
EC2,1171-1196.

Barbuceanu, M. , Trausan-Matu, S., Molnár, B. (1987b)
Integrating declarative knowledge programming styles
and tools in a structured object AI environment, Proc.
IJCAI-87, Morgan Kaufmann Pub. Inc., 563-563.

Barbuceanu, M. , Trausan-Matu, S., Molnár, B. (1988) The
XRL2 Manual, in preparation.

Brachman, R.J., Levesque, H. (1984) The tractability of
subsumption in frame based description languages, Proc.
AAAI-84,Morgan Kaufmann Pub. Inc.

Chandrasekaran, B. (1986) Generic tasks in Knowledge based
reasoning: high level building blocks for expert system
design, IEEE Expert, Fall 1986, 23-30.

Clancey, W. (1985) Heuristic classification. Artificial
Intelligence 27, 1985, 289-350.

Georgoff, M., Lansky, A., Bessiere, p. (1985) A procedural
logic, Proc.IJCAI-85.

Bobrow, D.G., Stefik, M. (1981) The LOOPS manual, TR-KB-
VLSI-81-13, Xerox Palo Alto Research Centre.

Sussman, G.J., Steele, G.L. (1980) Constraints - a
language for expressing almost hierarchical
descriptions. Artificial Intelligence 14, 1980, 1-39.

Wright, J.M., Fox, M.S. (1984) SRL 1.5 User Manual, T.R.
C.M.U., Robotics Institute, 1984.

29

’' L l . '

É - , : ;

H’": • ■•

ii,-'-:'...

’■ii, '

■t;-- '■•
’.flt!''. ■ Í".
■&■*'■■, t -

i!' .. .
h’' • ■

k^'

A:

“<■ . ■ t:-

' r-.
?■■ '7. '

 ̂Í.C:

,K'' ■

p'‘- ,

,1! ■ ' '■
i*; ' '

t-
■ r. üifí:

■i

f •

FLC: An Experimental Language for Designing and
Implementing Frame-iiased Representation Features

László Kiss & Attila Farkas

Advanced Systems Department
Central Research Institute for Physics
P.O.Box 49 Budapest 1525 Hungary

ABSTRACT

This paper describes an experimentai language called FLC, which has been designed to
facilitate the design and implementation of frame-based representation languages. Using FLC.
the user can define his own representation schemes in a declarative way so that this
descriptive information can be used to generate efficient code. The pieces of code obtained in
this way can be usefully Incorporated when implementing a frame-based representation
language. The code generation technique also enables the iterative modification of the
representation language during knowledge base construction to better fit the needs of a
particular application.

1. INTRODUCTION

The research area of knowledge representation has a long, complex history. During the past
20 years numerous representation languages have been designed. A characteristic feature of
the beginning of this period was that many of the representation languages were built around
one particular application area (e.g., Units [Stefik, 1977] for molecular biology or KRL (Bobrow
& Winograd, 1977] for natural language understanding). Though this was beneficial to the
specific application the language designer had in mind. It often resulted In the system's
inadequacy for later use in somewhat different types of applications. The lack of widely
useable representation languages often obliged Al projects to start by designing and
Implementing a knowledge representation language suitable for their particular application. This
made the time spent with an application undesirably longer.

By the beginning of the eighties the drawbacks of this phenomenon had commonly been
realised [Brachman & Smith, 1980] and attempts were made to overcome the difficulties. The
two obvious solutiohs to the problem are to either cohstruct far more general knowledge
representation languages that are of use to a wider range of applications or to provide
support for the design and implementation of representation languages so that the process'
can be shortened in time. There are a great number of representation languages
demonstrating the useabllity and success of the first idea. In order to illustrate their approach,
two such languages, RLL and SRL. will be described briefly in the next section.

The rest of the paper tries to contribute to the second approach, namely, the acceleration of
the design and implementation phase of representation languages. More precisely, the paper
deals only with frame-based representation languages [Minsky, 1975], An experimental language
called FLC is described, which allows the user to define his own (frame-based) representation
schemes in a declarative way so that this descriptive specification can be used to generate
efficient code. The pieces of code obtained in this way can be usefully incorporated when
implementing a frame-based representation language. Firially, at the end of the paper some
examples of how to use FLC are also given.

2. FLEXIBILITY AND REFLEXIVITY IN REPRESENTATION LANGUAGES

Much work has been done since the beginning of the decade to provide more general
frameworks for representing knowledge in Al applications. One result of these investigations Is
that the architecture of truely flexible systems is necessarily hybrid, that Is, these systems
must integrate many distinct representational paradigms. Another key feature to flexibility is the
reflexivity of the architecture, which means that a flexible system must contain in itself the
capability to modify its components and Its organization.

One of the earliest representation systems meeting the above requirements is the RLL system
[Greiner & Lenat, 1980). The lowest layer of RLL is a frame-based representation facility. Using
this facility, RLL explicitly represents the components of representation languages in general
and of Itself in particular. Starting from the initial RLL environment the user can step by step
modify any aspect of the system’s operation (e.g., automatic inference mechanisms,
fundamental access functions and control regimes) by modifying or creating units representing
system components. In such a way RLL can be tailored to suit many specific applications.

Purely frame-based languages, which are the main theme of the paper, have evolved in a
similar way in the last few years. They also have adopted some kind of reflexivity. They define
a way of representation for the concepts relevant to the representation language itself (e g.,
slot, relation and inheritance) and, additionaly, the fundamental access functions of the
language are implemented in such a way that their : aeration is highly dependent on the part
of the knowledge base representing these concsats. Manipulating this part of the knowledge
base, the usér is able to adjust the language to his particular needs.

An example for a frame-based language with reflexive features is SRL [Wright at al., 1984],
which calls its representational units schemata. In SRL, the concept of a relation is
represented as a schema. The initial set of relations contains only two system defined
relations, instance and is-a, which are also represented as schemata. One of the most
powerful features of SRL is that the user can define new relations that are specifically tailored
to the needs of a particular application. To define a new relation, a schema with the name of
the relation has to be created, and this schema has to be linked to the predefined relation
schema by the is-a relation. The inheritance semantics of the relation, that is, the specification
of what information is to be passed along the relation (e.g., which slots’ values should or
should not be inherited), can be given by filling in the slots of the schema (inherited from the
relation schema through the is-a relation) in the appropriate way.

3. A CHARACTERIZATION OF FRAME-BASED REPRESENTATION LANGUAGES

Despite the long history of frame-based representation languages, there is still no agreement
on many related topics. Certain areas (such as multiple inheritance, or inheritance with
exceptions [Touretzky et al., 1987]) are still under intensive research. Another major source of
variations is that in frame-based representation languages reflexivity is implemented in different
ways and to different degrees. If we consider only those properties that are shared by all of
the frame-based languages, we are left with a few common features. Based on these features
the following characterization of frame-based languages can be given;

- In frame-based systems the information is indexed by the objects. While questions related to
knovriedge stored about a given object can be answered efficiently, it usually needs a lot of
effort to answer queries like finding out which objects hold a certain property. (In hybrid
systems, such questions can be answered easily by using, for example, backward chaining
rules.)

- In addition to simply storing and retrieving information, frame-based representation languages
automatically perform, as part of their assertion and retrieval operations, a set of inferences
over the encoded information. Thus, the amount of information accessible in frame-based
systems is larger than that explicitly encoded In frames. Well-known examples of automatically

32

peifonned Inferences are Inheritance, and Inference methods that use descriptive information to
maintain semantic integrity constraints [Pikes & Kehler, 1985].

♦.OVERVIEW OF FLC

In [Greiner & Lenat, 1980] the authors liken RU. to a stop organ rather than a piano. By this
analogy the stops of the organ correspond to the predefined representational parts (e.g., slots,
Inheritanca, etc.) of RLL Just as a stop organ can be made to sound like a piano by pulling
and pushing the appropriate stops, RU. can be made to resemble a very wide range of
representation languages, including, for example, KRL, OWL [S2 olovits at al., 1977], and KL-
ONE [Brachman & Schmolze, 1985].

Fallowing the analogy, this paper proposes to assemble the piano from basic building blocks,
rather than obtain It as the result of specialising a very general instrument What makes this
approach acceptable is that a mechanism is provided allowing the main modules of the piano
to be built automatically from specifications describing the rriodules.

The FLC language has been designed to bring about the program illustrated by the analogy.
FLC's architecture is based on the above characterisation of frame-based languages. The
building blocks used by FLC to construct new representation schemes are the elements of a
primitive object-centered data structure, which we call stripped frames. This data structure
senres as the actual repository of data f(^ frame language to be designed. FLC accesses
this data structure through its predefined accgg^ fu iw °"® '

In addition to storing Information, frame-based languages are also expected to perform various
inferences over the encoded Information. So, when designing a frame-based language, we also
need some means of specifying what inferences it should perform. For that purpose, FLC
contains a declarative sublanguage which allows the user to define "frame specific” inference
schemes in the form of logic assertions. For example, the user can make assertions about the
cases in which a slot should be associated with a certain frame. The frame specificity of FLC
logic assertions is the' result of restricting the way they can be defined. They can be built
only from predefined clauses corresponding to calls of the access functions of stripped frames.

The purpose for designing FLC was to facilitate the design and implementation of frame-based
representation schemes. In the following, we illustrate how FLC achieves this goal. Suppose
we vrant to Implement the access function named get-slots of a frame-based language. The
first thing we have to do is making logic assertions describing when a frame should contain a
certain slot Once these assertions have been defined a query can be issued for finding the
slots of a frame. In FLC, however, the effect of this query is not an “assertion guided" search
for the slots. Instead, assertions are used to generate efficient code for finding the slots in a
'direct" way. Using this piece of code, defining the get-slots function can not be a problem.

FLC is an extension to Lisp. It is comprised of a collection of Lisp functions that fall into
three categories according to their role in FLC. The first set of funtions are the access
functions of the data structure called stripped frames. The second set includes only two
functions: one for asserting clauses in the database of logic assertions and another one for
their retraction. The rest of the functions are those producing Lisp code based on descriptions
in the database.

4.1. Stripped Frames

If we strip frame-based languages from inheritance, inverse link maintainance, integrity
constraints, etc., we are left with a simple record-like data structure where one can retrieve
only those facts explicitly asserted. We use the term stripped frame for a data structure with
such properties. The construction of a more sophisticated data structure, e.g. a particular
frame-based representational scheme, can be based on such a relatively primitive data

33

staiclure. The structural properties of snipped frames defined In FUC are very similar to that
of ordinary frames: a stripped frame is made up of a number of slots, each slot having a
number of values associated with it Additlonaly, slots can have slots, too, called facets. The
difference between the two data structures lies In their access primitives. While In the case of
stripped frames retrieval and assertion is done on a "what you get is what you stored" basis,
in frame-based languages a good deal of inference (e.g., inheritance) is performed at assertion
and retrieval time.

Every representation language has to provide for some kind of repository of data. Stripped
frames serve as a simple information storage for frame-based languages implemented with
FLC. The access functions of a frame-based language can be defined in terms of the access
functions of stripped frames. It is this definition process that FLC tries to facilitate.

4.2. Logic Assertions

FLC contains a simple declarative language which allows the user to define 'frame specific"
inference schemes in the form of logic assertions. The specifications written in this sub
language have much resemblance to Prolog's Horn clause specifications [Clocksin & Mellish,
1981]. There is a major difference, however, in the way these specifications are used by the
two languages. In Prolog, Horn clauses are fed into a general inference mechanism based on
resolution. In FLC, the form of logic assertions is considerably restricted compared to that in
Prolog: logic assertions can be built only from predefined clauses that can be associated with
executable code (Lisp function calls). Exploiting this restriction FLC provides functions for
generating Lisp code from the assertions.

The underlying ideas of the use of logic assertions in FLC can better be understood in
comparison with how it is done in Prolog. The restricted form of FLC logic assertions can
easily be imitated with Prolog Horn clause definitions. This imitation, which is also useful for
giving semantics to FLC logic assertions, can also be viewed as a kind of representation for
frames in Prolog, though very inefficient. By this representation the fact that the slot s of the
frame f has the value v would be represented as

value(f, s, v).

For example, the assertions that mammals have four legs and dogs are mammals could be
encoded as the facts

vaiue(mammal, number-of-iegs, four),
value(dog, is-a, mammal).

To be able to deduce that dogs have four legs, we need rules reasoning on the facts. Once
the general rules

has-value(FRAME, SLOT, VALUE):- value(FRAME, SLOT, VALUE).
has-value(FRAME, SLOT, VALUE):- value(FHAME, is-a, VI),

has-value(V1, SLOT, VALUE).

have been eisserted we can ask the question

?- has-value(dog, number-of-legs, L).

and get the answer L = four. With this styte of representation the encoded information can
be used in a very flexible way. For example, it is easy to answer the question "What is that
dogs have four of?" whereas frame-based languages do not support such queries.

In FLC's declarative sub-language assertions are represented in a way similar to the above
example. For example, the above Prolog rules could be formulated as

34

((has-value f s < v >) (v a i u e f s <v>))
((has-value f s < v >) (value f ’IS-A <v1>)

(has-value <v1 > s <v>)).

The first thing that strikes the eye Is that FUC logic assertions are written according to Lisp
syntax, that is, predicates are the first element of a list followed by their arguments separated
^ spaces. Another difference between Prolog and FLC logic assertions is that the latter can
use Lisp variables in addition to constants and logical variables. This also contributed to the
change of the simple Prolog syntax. Lisp variables and constants follow Lisp syntax, logical
variables can be distinguished by the angle brackets enclosing them.

The use of Lisp variables in FLC logic assertions is more a limitation than a feature. The fact
that the first two parameters of the has-value predicate are Lisp variables instead of logical
variables Indicates that these parameters have to be instantiated with either a Lisp variable or
a constant (and not a logical variable) when a query using this predicate is issued. This
implies that a . query for finding all the existing frames with a certain property can not be
issued, which is in accord with the object-centred nature of frame-based languages (i.e. with
the fact that the encoded information is accessible via the objects). Lisp variables can be
viewed as formal parameters to clause definitions. Only those Lisp variables which appear in
the head of the clause can occur in the tail of a clause.

In FLC, logic assertions can be built only from predefined predicates. The basic predicates, in
tenns of which further predicates can be defined, are listed below with their respective
arguments:

predicates arguments

frame frame-name
slot frame-name, < slot-name >
value frame-name, slot-name, < value >
facet frame-name, slot-name, < facet-name >
facet-value frame-name, slot-name, facet-name, <facet-value>

The arguments which are not enclosed in angle brackets can not be substituted with
uninstantiated logical variables. That Is, the first occurrence of a logical variable within the left
hand side of a clause has to be in place of an argument enclosed in angle brackets. For
example, in the above definition of has-value the logical variable <v1 > appears in the term
(value f TS-A <v1 >) before it is used in (has-value < v l > s <v>) .

In addition to the predicates listed above, FLC provides the standard Prolog predicates not,
equal and cut.

2.3. How to Use the Assertions

FLC provides three functions named find-all, find-one and prove for utilizing the information
stored in the form of logic assertions. In Prolog, the findall predicate is used to determine all
of the terms that satisfy some goal. The Prolog goal findallQt, G, L) constructs a list L
consisting of all of the objects X such that the goal G is satisfied. The find-all function in FLC
takes arbitrary number of arguments. The first is a logical variable and the rest Is a
conjuctlon of goals to be satisfied. It returns a Lisp expression that when executed, computes
and returns a list of all of the solutions to the variable satisfying the goals. For example, the
Lisp expression returned by the function call

(find-all < z> (has-value x y <z>))

collects all the values < z> which are associated, according to the above definition of has-
value, with the y slot of the frame x. The symbols x and y are Lisp variables in the
generated code and they are expected to be specified when the code is executed.

The pieces of code generated in this way can be enciosed in a function definition defining an
access function of the frame language under development.

The function find-one is similar to find-all except that the code generated by it searches for
only one solution. The prove function takes any number of goals as its arguments and the
code produced by it returns a logical value according to the satisfiability of the goals.

2.4. Generating Code from Assertions

This section gives a rough outline of how the functions find-all, find-one and prove convert
logic assertions to procedural Lisp specifications. The method of code generation can, in fact,
be quite naturally derived, still writing the generated code in every particular case instead of
making logic assertions would be a rather tedious task regarding the highly recursive nature
of the problem. Furthermore, keeping the specification of our representation language in the
form of logic assertions enables the iterative modification of the language during knowledge
base construction to better fit the needs of a particular application.

The thorough compiilation of FLC logic assertions into procedural Lisp specifications is made
possible by three major restrictions on the language. These are the following:

- New predicates can only be defined in terms of some predefined predicates specific to FLC
(frame, slot, etc.) and usual built-in predicates like not and equal.

- The use of logical variables in assertions is considerably restricted.

- The run-time definition of predicates is not allowed.

The code generating procedure, which works by a process of stepwise refinement, will be
briefly illustrated in the case of the function call (find-all < y > g.| ... g^), where g,,
are goals and < y > is a logical variable that appears somewhere in at least one of the
goals. The code returned by this function call is supposed to compute and return all the
solutions to < y > that satisfy the conjunction of goals g„. During the
computation, the set of solutions is gradually narrowing as the goals are processed one after
the other. As soon as a goal proves to be unreachable, the procedure is over.

This computation scheme can be expressed in Lisp using the logical operation AND [Winston
& Horn, 1984]. The first step of the refinement process produces the code

(AND p^ ... Pp y),

where Pj denotes a yet unknown Lisp procedure for deciding the satisfiability of the goal g,-.
The p^, p^ procedures are supposed to collect the solutions to < y > in a list assigned to
the Usp variable/.

The next level in generating the code is the further refinement of these procedures. Let
denote the tails of the clauses matching the g,- goal and assume for simplicity that these

tafls do not contain the cut predicate. The goal g,- is satisfiable if at least one of the
conjunctions of goals f,-j, ..., t j^ can be satisfied. The list of solutions to < y> is the
concatenation of the lists of solutions found at each of the
the procedure py can be refined as

p, - (PROGN Pii ... Pin, L).

fy_ goal expressions. Thus,

36

where the Lisp construct PROGN is a simple control structure for sequential execution, p,y
denotes a procedure for deciding whether the conjunction of goals r,y can be satisfied, and L
Is a logical value that Is true if at least one of the goal expressions is satisfiabie.
The Pjf Pj— procedures are also supposed to append the list of elutions they found to
the list containeo in the above mentioned Lisp variable y.

The next step of the refinement process would be to further specify the procedures
Pl^. However, the task to be performed by these procedures is similar to what was done in
the first step of the refinement process, namely, the decision of the satisfiability of a
eonjunetlon of goals. Thus, the code generating process can be defined as a recursive
procedure. As the code for checking the satisfiability of the goals Is generated, the
iltematively changing AND and PROGN constructs become more and more deeply embedded
Into each other until, finely, the goals with the predefined predicates are reached and the
recursion stops.

S. EXAMPLES

5.1. The Inheritance of Slots in a Taxonomic Hierarchy

The first example shows how to define a function that collects and returns all the slots of a
given frame x in a conventional IS-A hierarchy. Let us assume that in our frame-based
language subclass and element links are established by the instantiation of the IS-A and INST
slots, respectively. First the predicate has-slot will be defined to characterize the cases in
which a slot is associated with a given frame. Note that the has-slot predicate below is made
up of only those basic predicates listed in the previous section plus standard predicates like
nof and aqua/.

((Inherit-slot-through-is-a x < y >) (s l o t x TS-A)
(value X ’IS-A < z >)
(slot < z> < y >)
(not (equal < y > ’INST)))

((Inherit-slot-through-is-a x < y >) (s l o t x ’IS-A)
(value X 'IS-A <z>)
(Inherit-slot-through-is-a < z> <y>))

((inherit-slot-through-inst x < y >) ;- (slot x ’INST)
(va lu e X 'INST <_z>)
(slot < z> < y >))

((has-slot X < y >) (slot x < y >))
((has-slot X <y>)(inherit-s lot-through-is-a x < y >))
((has-slo t X < y >) :- (in h e rit-s lo t-th ro u g h -in s t x < y >))

The definition of has-slot can now be used to produce Lisp code for finding the slots of a
frame. This can be done by issuing the function call

(find-all < s> (has-slot f <s>)) .

Suppose that the access function responsible for collecting ail the slots of a given frame is
called get-slots. Using the above function call, the Common Lisp definition of the get-slots
function is as simple as

(DEFUN get-slots (f)
#.(find-all < s> (has-slot f <s>))

).

37

where the #. construct, when encountered, causes the read-time substitution of the
immediateiy foiiowing expression with the vaiue of that expression.

In addition to finding the slots of a frame, the has-slot predicate can aiso be used to decide
whether a given slot is associated with a given frame. The function cail

(prove (has-slot f s))

returns the code to do the job.

5.2 Representing Default Information

Much of the real-world knowledge appears in the form of normative statements. These are
statements that are usually true, or can be assumed to be true in the absence of contrary
information. Many frame-based languages support the representation of such information and
provide reasoning mechanisms for deaiing with the cases vioiating the default assumptions. A
commonly used default reasoning technique is that the vaiue of a slot in a frame representing
a set of objects is regarded oniy as a default vaiue and is inherited only if a specific vaiue
for a particular individual is not known. In FLC this scheme can be impiemented using the
built-in cut (!) predicate. Supposing that the predicate Inherit-value has already been defined,
the default scheme can be expressed in the following way:

((has-value f s < v >) :- (value f s <v>) !)
((has-value f s < v >) :- (inherit-value f s <v>))

Sometimes it is convenient to associate a default value with a property (slot) in itself, rather
than as the property of a set of individuals. That is the case, for example, when it is not
easy to identify the set of objects having the property or, though the latter can be done, we
do not want to represent the set in the knowledge base. If we want to have slots with their
own default values in our representation language, first we have to decide how to represent
that a slot has a default value. A very simple way of representation could be to create a
frame with the name of the slot and put the default value in a slot called DEFAULT of this
frame. Assuming this method of representation, the inferences comprising the default scheme
could be encoded as:-

((has-value f s < v >) ;- (value f s <v >) !)
({has-value f s < v >) : - (inherit-value f s <v>) !)
((has-value f s < v >) :- (has-slot f s)

(value s 'DEFAULT <v>)),

where the predicates inherit-value and has-slot are supposed to have been previously defined.
The meaning of these assertions is that a frame inherits the default value of a slot if the slot
is associated with the frame and a value for the slot in the frame can not be derived in any
other way.

Schemes simitar to the above default scheme are usually among the representational facilities
provided by frame-based languages. Using FLC, however, one can define representation
schemes far more specific to a particular application domain. Suppose, for example, that a
biologist virants to create a knowledge base describing certain species of animals. He may find
the number two a reasonable default value for the number-of-eyes slot This domain specific
knowledge can be directly "wired in" to the reasoning mechanism by appending the clause

((has-value f 'NUMBER-OF-EYES TW O):- (has-slot f 'NUMBER-OF-EYES))

to the above definition of the default scheme. The advantages of encoding domain specific
knowledge In the reasoning mechanism are that it increases the efficiency of information
access and makes the representation language more suitable for the particular application. A

38

dlsa<N'antage of wtred-ln features Is that they are not available for redefinition within the
representation language.

ACKNOWLEDGEMENTS

We are grateful to Péter Krauth and Bálint Molnár for conversations which helped to clarify
many of the ideas presented in this paper.

REFERENCES

Ba/buceanu, M., Trausan-Matu, S., Molnár, 8. Integrating Declarative KnowleJge Programming
Styles and Tools for BuDding Expert Systems. T. R. KFKI-1987-02/M, Budapest, Hungary

Bobrow, D.G., Wlnograd, T. An Overview of KRL, a Knowledge Representation Language.
Cognitive Science 1 (1). 1977,3-46.

Brachman, R.J., Smith, B.C. (Eds.) Special Issue on Knowledge Representation. SIGART
Newsletter, No. 70. February, 1980.

Brachman, R.J., Schmolze, J. An Overview of the KL-ONE Knowledge Representation System.
Cognitive Science 9 (2), 1985,171-216.

Ooeksin, W.F., Mellish, C.S. Programming in Prolog. Springer-Verlag, Berlin, 1981

Fikes, R.E., Kehler, T.P. The Role of Frame-Based Representation in Reasoning.
Communications of the ACM 28 (9), 1985,904-920.

Greiner, R. A Representation Language Language. HPP Working Paper HPP-80-9, Computer
Science Dept. Stanford University, June 1980.

Greiner, fl„ Lenat D.B. A Representation Language Language. Proc. AAAI-80. Stanford, CA,
1980,165-169.

Minsky, M. A Framework for Representing Knowledge. In The Psychology of Computer Vision,
P. Winston (ed.), McGraw-Hill, New York, 1975

Rychener, M. PSRL; an SRL-based Production Rule System. Carnegie Mellon Univ., Dec. 1984.

Stefik, M. An Examination of a Frame-Structured Representation System. Proc. IJCAI-79. Tokyo
845-852.

Szdovits, P., Hawkinson, LB., Martin, W.A. An Overview of OWL a Language for Knowledge
Representation. MIT/LTS/TM-86, Massashusetts Institute of Technology, June 1977.

Touretzky, D.S., Horthy, J.F., Thomason, R.H. A Clash of Intuitions: The Current State of
Nonmonotonic Multiple Inheritance Systems. Proc. IJCAl-87. Milan 476-482.

Winston, P.H., Horn, 8.K.P. USP. Addison-Wesley, Menlo Park, 1984.

Wright, J.M., Fox, M.S. SRLJ1.5 User Manual. Robotics Institute, Camegie-Meilon University.
Pittsburgh, PA, 1983.

39

,-((■ ■ V V; f Í.:

r
Sima, D., K o tfS is , P,^ K u t,o i* , L ., a n d T ic k , J.

Kandó Kálmán C o lle g e o f E le c t r i c a l E n g in e e r in g

In s t i tu te f o r M a th e m a t ic s an d C o m p u te r S c ie n c e

life

f- ■
JX-

Remor a n d r e k n e l b a s e d k n o w l e d g e r e p r e s e n t a t io n

Ah® m a n ip u l a t io n

L In t r o d u c t io n

In O c to b e r 1987 o u r I n s t i t u t e w as c o m m is s io n e d b y t h e

National C o m m itte e f o r T e c h n o lo g ic a l D e v e lo p m e n t COMFB> t o

design and Im p le m e n t a k n o w le d g e b a s e d s y s te m f o r

m athem atics . . A f t e r a r e v ie w o f s e v e r a l k n o w le d g e

re p re s e n ta t io n sch e m e s w e fo u n d t h a t n o n e o f t h e s y s te m s

were re a d ly m e e t in g o u r r e q u ir e m e n ts an d t h e r e f o r e a

d i f fe re n t a p p ro a c h w a s a d o p te d w h ic h we d e v e lo p e d o n o u r o w n

and t h is is d e s c r ib e d b e lo w .

Know ledge r e p r e s e n t a t io n te c h n iq u e s , e s p e c ia l ly . ̂ t h o s e

in e x te n s iv e u s e s in c e t h e la t e s i x t i e s , s u c h a s s e m a n t ic

n e tw o rks , r u le - o r p r e d ic a te - b a s e d lo g ic , m ay re a s o n a b ly be

called as b e in g o f m ic ro le v e l , i n t h e s e n s e t h a t t h e y a r e

composed o f e le m e n ta ry o b je c t s a n d f o r m a l d e s c r ip t io n o f t h e

re la t io n s -u b e tw e e n th e m , e .g . i n t h e s t a t e m e n t

" fa th e r_ o f< S te p h e n ,S te v e > " w r i t t e n in PROLOG.

The r e p r e s e n t a t io n o f k n o w le d g e p r e s e n te d b e lo w i s

based on tw o o b je c t s g f , on t h e s o c a l le d r e m o r s

41

I

an d r e k n e ls ; i t , i s a h ie r a r c h ic a l ly s t . r u c t ,u r e d and |

o p e n -e n d e d w a y o f r e p r e s e n t a t io n .

T he r e m o r and r e k n e l b a s e d kn o w le d g e

r e p r e s e n t a t io n s a r e o f m a c ro le v e l, s in c e t h e s m a l le s t u n i t

o f k n o w le d g e f o r c o n s id e r a t io n is a s e m a n t ic u n i t r e la t e d to

a c o n c e p t . J u s t l i k e t h e d e f in i t i o n o f t h e R ie m a n n - in te g ra l;

A f u n c t io n c a n be in t e g r a t e d , i f t h e l i m i t s o f t h e lo v e r

an d u p p e r D a rb o u x sum s a r e t h e sam e.

A m a c ro le v e l r e p r e s e n t a t io n c a n be a d v a n ta g e o u s ly used

in d e v e lo p in g new e le c t r o n ic le x ic o n s , t e x tb o o k s , c o m p u te r

a id e d le a r n in g an d te a c h in g p ro g ra m s CCAL, CAT> o r a n y nove ltl

e le c t r o n ic t o o ls d e s ig n e d f o r k n o w le d g e t r a n s f e r .

T he s y s te m s im p le m e n te d in l in e w i t h t h e above (

p r in c ip le s see m t o be c lo s e ly r e la t e d t o t h e h y p e r te x t ,]

s y s te m s d e v e lo p e d in r e c e n t y e a r s <[Co871,CSh871> and iu l

som e r e s p e c t s t h e y c a n be c o n s id e re d a s t h e o u t g r o w th o f o u r j

r e s e a r c h a c t i v i t y o n t h e f i e l d o f GAL and GAT p ro g ra m s]

<XFS85],C0S88J>.

K n o w le d g e r e p r e s e n t a t io n a t a m a c ro le v e l

2.1. K n o w le d g e m o rs e ls

In m a c r o - le v e l k n o w le d g e r e p r e s e n t a t io n t h e s o ca lle d]

hnoxtiledge m o rse ls , w h ic h c o n s is t o f t h e sum o f a l l t l ie j

k n o w le d g e a s s o c ia te d w i t h a n in d iv id u a l c o n c e p t, o r m ore]

p r e c is e ly t h e sum o f a l l t h e k n o w le d g e t h a t t h e o r ig in a t o r i

o f t h e k n o w le d g e m o rs e l r e l a t e s t o t h e c o n c e p t, a re]

42

cons idered t.o b e o f p r im a r y im p o r ta n c e . The natme o f th e

concept is th e t e r m u s e d a s a I d e n t i f i e r f o r t h e c o n c e p t.

An exam ple o f a kn o w le d g e m o rs e l is a n e n t r y w i t h t h e

a sso c ia te d p a ra g ra p h in a le x ic o n , c o r re s p o n d in g t o a

concept.

We s h a ll vise t h e fo l lo w in g n o ta t io n . - t o d e n o te a

knowledge m o rs e l

ten (concept naw)

0

o r in a v s im p l i f ie d m a n n e r, i f t h e c o n c e p t nam e i s no t.

s ig n if ic a n t in t e r m s o f r e p r e s e n t a t io n :

0

2.2. The re m o rs

C ru c ia l t o kn o w le d g e i s t h e f a c t t h a t t h e in d iv id u a l

concep ts do n o t e x i s t in i s o la t io n , r a t h e r , t h e y a r e r e la t e d

to one a n o th e r b y s ig n i f i c a n t r e la t io n s h ip s and

re la t io n s .

43

T h u s , f o r in s ta n c e , c o n c e p ts m ay b e h ie r a r c h ic a l ly

r e la t e d a s i s t h e c a s e b e lo w

. , 1 BistriEtttion .1 ,

o r a ls o , i n a n y k n o w le d g e m o rs e l I d e n t i f i e r

o t h e r m o rs e ls a s d e n o te d b e lo w :

0 -

the knoledge lursel
referencing the i-th
knoledge norsel

....o
i-th knoledge norsel

m ay o c c u r in

Now t o r e f l e c t w h a t h a s b e e n s h o w n a b o v e , i t i s h ig h

t im e t h a t w e e x te n d e d t h e c o n c e p t o f k n o w le d g e m o rs e l t o a l l

t h e r e la t io n s h ip s t h a t r e l a t e a g iv e n c o n c e p t t o a n y o th e r

c o n c e p ts , o r r a t h e r , to w a r d s t h e r e la t io n s t h a t a p e rs o n

a l lo c a te s t o i t t o r e p r e s e n t k n o w le d g e . T h u s , In s te a d o f an

-J
i s o la t e d k n o w le d g e m o rs e l, a re la te d knou>ledge m orse l, o r

44

s h o r t ly rom or, l.e . t.h e u n io n o f t h i s I s o la te d kn o w le d g e

m orse l and t h e .a s s o c ia te d r e la t io n s w i l l be c o n s id e re d as

the b a s is o f kn o w le d g e r e p r e s e n t a t io n .

'T»t>

2.3 Knowledge e le m e n ts

T y p ic a lly a n y re m o r w i l l c o n s is t o f t h e s o c a l le d

"hnels” , o r knouiledge elements d e n o te d as ;

: J KMir naw

... ^

Any p a r t i c u la r k n e l i s a s e m a n t ic a l ly m e a n in g fu l u n i t

which is r e la t e d t o som e a s p e c t o f a c o n c e p t, s u c h as t h e

d e f in i t io n , o r a n a t t r i b u t e o f a c o n c e p t, o r a l i s t o f

examples ^ in u s a g e , e tc .F o r e xa m p le t h e d e f in i t i o n ,

i l lu s t r a t io n and t h e s c o p e o f t h e R iem an n in t e g r a l , e tc .

A k n e l m aybe r e p r e s e n te d a s t e x t u a l , g r a p h ic a l ,

p ic to r ia l o r e v e n a u d io in f o r m a t io n , o r a m ix t u r e o f th o s e .

I t is im p o r t a n t t o em p ha is ize t h a t a k n e l m ay a ls o be a

p ro ce d u re , s u c h a s f in d in g t h e n u m e r ic in t e g r a i u s in g

Simpson’s m e tho d .

2.4 R e la te d K no w le dg e E le m e n ts C re kn e ls !)

In t h i s c a s e i t i s p o s s ib le t h a t in a n y kn o w le d g e

45

e le m e n t. t.h e i d e n t i f i e r o f a n o t h e r k n o w le d g e e le m e n t o r

a n o th e r r e m o r m ay o c c u r , o r a ls o , t h a t t h e in d iv id u a l

k n o w le d g e e le m e n ts m ake up a h ie r a r c h ic a l s t r u c tu r e ; * " B e in g

a w a re o f a l l t h a t a b o v e , we s h o u ld c o n s id e r a rekne l

Cr&lated knotAiledge e le m e n t) - i.e . a k n o w le d g e e le m e n t w it.h

a l l i t s r e l a t io n s 2 und r e f e r e n c e s - a s t h e b a s ic u n i t o f o f

k n o w le d g e r e p r e s e n t a t io n .

T o sum i t up : r e m o r s c o n s id e re d t o be t h e e x p a n s io n o f

c o n c e p ts , w h ic h in t u r n i d e n t i f y t h e r e la t io n s h ip o f a g iv e n

t e r m t o a n y o t h e r te r m s . R e m o rs w i l l a lw a y s c o n s is t o f

r e k n e ls , w h e re b y e a ch r e k n e l w i l l c o n ta in t h e r e f e r e n c e s to

in d iv id u a l k n o w le d g e e le m e n ts r e la t e d t o t h e c o n c e p t and th e

r e la t io n s h ip o f a k n o w le d g e e le m e n t w i t h o t h e r lo c a l oi-

g lo b a l k n o w le d g e e le m e n t , b e s id e s t h e r e f e r e n c e s t o o t h e r

r e m o r s , o f t h e k n o w le d g e e le m e n t in q u e s t io n .

I t i s I m p o r t a n t t o n o te h e re t h a t t h e r e p r e s e n t a t io n

d e s c r ib e d h e re h a s tw o c r u c ia l f e a t u r e s , v iz . , t h e is o la te d

k n o w le d g e e le m e n ts and m o rs e ls , an d th e r e la t io n s and

r e f e r e n c e s am ong th e m . F ro m t h i s p o in t o f v ie w th e

r e p r e s e n t a t io n o f k n o w le d g e d e s c r ib e d h e re i s t o be re g a rd e d

a s a h ie r a r c h ic a l h y p e r t e x t s y s te m .

3. M a n ip u la t io n o n K n o w le d g e

F o r t h e d a ta s t r u c t u r e o u t l in e d a n u m b e r o f kn o w le dg e

m a n ip u la t io n s c a n b e d e f in e d in o r d e r t o a llo w f o r th e

u t i l i z a t i o n o f t h e sam e m a c ro le v e l k n o w le d g e b a s e t o m e e t

46

q u ite d i f f e r e n t n e e d s , s u c h a s aui e le c t r o n ic le x ic o n o r a

CAT o r a GAL p ro g rzu n . T he t y p e o f a p p l ic a t io n w i l l be

de term ined b y t y p e o f k n o w le d g e m a n ip u la t io n t o be d e f in e d

and im p lem ented . Now i t m u s t be o b v io u s t h a t t h e a b o v e w a ys

o f r e p re s e n t in g kn o w le d g e o f f e r new t o o ls t h a t s u r p a s s

t r a d i t io n a l m e th o d s f o r k n o w le d g e t r a n s f e r by in t e g r a t i n g

the fu n c t io n s o f c la s s ic a l t o o ls and b y p r o v id in g new

fu n c tio n s <e.g. f u n c t io n s t h a t e n a b le t h e u s e o f p ro c e d u re s

su p p o rtin g r o t e le a r n in g an d c is s e s s in g kn o w le d g e le v e l,

e tc .)

Below y o u w i l l f i n d a s u m m a ry o f th e m a in f u n c t io n s

con tem pla ted .

3.1 D ire c t A cce ss o f K no w le dg e

T h is f f u n c t io n e n a b le s t h e u s e r t o d i r e c t l y a c c e s s t h e

rem ors by t h e i r i d e n t i f i e r s b y a d e q u a te p r e s e n t a t io n o f

reknels.

■o
■o
•o
■ o

47

A s 3 d e fa u U . o p t . io n t .h is 1 'u n c t.io n w i l l e n a b le bh e u s e r

bo lo o k u p s e q u e n b la lly bh e r e k n e ls r e la b e d b o a r e m o r J u s t

a s bh e c a s e i s i n r e a d in g b h ro u g h bh e e n b r ie s r e la t e d b o a

k e y b e rm In a le x ic o n . A f u r t h e r o p t io n i s bo im p le m e n t

d i r e c t a c c e s s o f r e k n e ls b y id e n t i f i e r .

I t s h o u ld b e p o in te d o u t t h a t e le c t r o n ic d is p la y o f

in f o r m a t io n h a s m any new w a ys t o u t i l i z e , o n e n e e d n o t w r i t e

o u t a r e k n e i i n f u l l le n g th o n t h e s c r e e n , h e m ay J u s t as

w e l l d e c id e t o p r e s e n t p a r t s o f t h e t e x t , o r f ig u r e s one

a f t e r t h e o t h e r , som e h ig h l ig h te d , som e b l in k in g , e tc .

3.1.1. S u p p le m e n ta ry F u n c t io n s t o D i r e c t A c c e s s o f K no w le dg e

A n O v e rv ie w o f C o n c e p t R e la t io n s

T h is f u n c t i o n e n a b le s t h e u s e r t o le a r n t h e e n v iro n m e n t

o f t h e t e r m s e a rc h e d in t e r m s o f c o n c e p ts , t o r e v ie w the

m a in a n d a s s o c ia te d o r b a s ic c o n c e p ts r e la t e d t o t h e te rm ,

smd i t s f u r t h e r r e fe r e n c e s .

E xam p le :

o

Ó Q Ó

48

Follow ing a r e fe r e n c e c h a in

S hou ld I t . o c c u r th a t . f o l lo w in g t h r o u g h a c h a in o f

p o in te r 's o r r e f e r e n c e s , w h ile a c c e s s in g t h e r e k n e ls Cor

rem ors> in t h e k n o w le d g e b a s e , a u s e r f in d s a c o n c e p t t h a t

he is le s s o r n o t f a m i l ia r w i t h a t a l l , he w i l l be a llo w e d

to Jump d i r e c t l y f r o m t h a t p o in t t o t h e r e m o r o r r e k n e l o f

th e c o n c e p t in q u e s t io n , o f c o u rs e in a c h a in e d fa s h io n so

th a t he can a ls o r e t u r n t o t h e o r ig in a l p o in t g o in g e i t h e r

s t r a ig h t b a ck o r b y v i s i t i n g e a ch l in k in b e tw e e n .

The Use o f P ro c e d u re s

S in ce r e k n e ls m ay be p ro c e d u re s t h e u s e r i s n a t u r a l ly

f re e t o u s e th e m t o s o lv e h is p ro b le m s , e.g. t o id e n t i f y th e

r o o ts o f an e q u a t io n u s in g som e n u m e r ic m e th o d . The n o t a t io n

o f a p ro c e d u re r e k n e l is

rdinel nue

C

49

3.2 S u p p l& m e n t.3 rv CAL í u n c t- io n s

S L o re d r e m o r s an d i-e k n e ls c a n be d i r e c t - ly u se d f o r

a s s e m b lin g c o m p u te r a id e d te a c h in g <CAT> p ro g ra m s . A c o u rs e

w i l l be d e s ig n e d b y d e f in in g t h e r e m o r s a n d r e k n e ls r e q u ir e d

i n t o a c h a in .

0 C > ' - , 0 Q i . 0
/ ' / '
/ V y »

0 Ö' 0
-O ' 0 0 ' o

O f c o u rs e t h e u s e r m ay d e c id e t o s e le c t o r u n s e le c t

r e k n e l w i t h in a p a r t i c u la r re m o r .

On t h e g iv e n k n o w le d g e b a s e s e v e r a l e le c t r o n ic c o u rs e s

CCAT p r o g r a m s i , e a c h o f d i f f e r e n t le v e l t o c h o o s e f r o m , may

b e d e f in e d in a p a r t i c u la r f ie l d , e.g . in P r o b a b i l i t y

C a lc u lu s .

50

For example:

DMKUss course

liuucei course

E le c t r o n ic CAT c o u rs e s w i l l c o n s is t o f a c h a in o f

rem o rs and r e k n e ls s e le c te d an d p r e s e n te d f o r t h e p a r t i c u ia i '

f ie ld , w h ich c a n be s u p p le m e n te d b y o p p o r t u n i t ie s t o

m em orize t h e m a t e r l 2 d., t o t e s t t h e s t u d e n t ’s p r o g r e s s an d t o

help h im th r o u g h p r o b le m - s o lv in g p ro c e d u re s .

S uD P ortin c M e m o r iz in g o r R o te L e a rn in g

By d e s ig n in g a n e f f i c i e n t w a y o f p r e s e n ta t io n , s u c h as

de laying and r e p e a t in g p a r t s o f t h e m a t e r ia ls o n d is p la y , i t

Is easy t o im p le m e n t s u p p o r t iv e m e th o d s f o r m e m o r iz in g

knowledge.

T e s tin g p r o g r e s s in o b ta in in g kn o w le d g e

On a n y e le c t r o n ic c o u rs e d e f in e d p r o p e r ly t h e u s e r may

include a t e s t a t a n y J u n c t io n n o t a t io n o f a t e s t .

51

D e p e n d ln s o n t.h e t.e s t. r e s u l t . s t.h e p re s e n t.a t . lo n o f t.he c o u rs e

m a t .e r ia l c a n b e m o d if ie d , s e e b e lo w

incorrect ansuer

correct ansuer

S k i l l a c a u is it . lo n

T e s t.s m ay b e d e s ig n e d and p r e p a r e d b y p la n n e d

a p p l lc a b io n o f p ro b le m s o lv in g p ro c e d u re s Ce.g. d e f in e th e

r o o t s o f a p a r t i c u la r e q u a t io n , e t c .) , o r b y c a l l in g f o r

c e r t a i n p ro b le m s o lv in g a c t i v i t i e s Ce.g. s u p p ly in g th e

d e f in i t i o n o f v e c^ ia b le s in a s e g m e n t o f a p ro g ra m w r i t t e n in

PASCAL).

3.3. R e la t io n b e tw e e n in d iv id u a l a c c e s s m odes t o kn o w le d g e

O f c o u r s e t h e a c c e s s m odes d is c u s s e d s h o u ld m ake i t

p o s s ib le t o s w a p b e tw e e n th e m , in o t h e r w o rd s , w h e n som eone

i s in a p a r t i c u la r c o u r s e , i t s h o u ld b e p o s s ib le f o r h im to

i n t e r r o g a t e t h e k n o w le d g e b a s e t o le a r n a b o u t c o n c e p ts he

d o e s n o t y e t know a n d r e t u r n t o t h e o r ig in a l p a th o f

le a r n in g d e s ig n e d f o r h im . S im i la r ly , h e m ay f in d i t

n e c e s s a ry t o a c c e s s t h e d e s c r ip t io n o f som e t e r m s w h ile

e n g a g e d i n s o lv in g a p a r t i c u la r p ro b le m .

52

At. t.he sam e t- im e , h o w e v e r , t h e r e m ust, be a n o p t io n t o

’’backspace'* o n t h e r o u t e c o v e re d s o f a r , r i g h t b a c k t o th e

s ta r t in g p o in t Csay t o t h e p o in t o f d e p a r tu r e in t h e

e le c tro n ic le x ic o n) , u n le s s t h i s s t a r t i n g p o in t i s t o o " f a r "

< from a te c h n ic a l p o in t o f v ie w i t i s d e s ir a b le t o k e e p a

re c o rd o f a g iv e n n u m b e r o f t h e m o s t r e c e n t s te p s : t h i s ,

how ever, i s n o t i n c o n t r a d ic t i o n w i t h a n y e d u c a t io n a l io g ic

e i th e r , a s t h e r e i s h a r d ly a n y u s e r w ho c o u ld ke e p in m in d

where he ̂s e t o u t f o r h is " d e t o u r " an d e v e n le s s s o , t h e

p o in ts he v i s i t e d in b e tw e e n , a f t e r he had m e a n d e re d iO t o

20 s te p s o f f m a in s t re a m .)

lb is one o f t h e fv in d a m e n ta l o b je c t i v e s o f t h e s y s te m t o be

expandable.

CAT p ro g ra m s w i t h f a i r l y a d v a n c e d " in t e l l ig e n c e " c a n be

Im plem ented b y in s e r t i n g t e s t s o f t h i s n a tu r e .

4. CATCH ME kn o w le d g e b a s e m a n ip u la t io n s y s te m

F o r t h e d e s ig n a n d im p le m e n ta t io n o f a s u b s e t o f re m o r

and re k n e l b a se d k n o w le d g e r e p r e s e n t a t io n a n d t h e kn o w le d g e

m a n ip u la tio n o p t io n s o u t l in e d a b o v e , a r e s e a r c h p ro g ra m o n a

g ra n t r e c e iv e d f r o m t h e N a t io n a l C o m m it te e f o r T e c h n o lo g ic a l

Developm ent COMFB) w a s s t a r t e d a t t h e I n s t i t u t e o f

M a the m a tics and C o m p u te r S c ie n c e o f K an dó K d lm á n C o lle g e

<KKVMF). The nam e o f t h e p r o d u c t i s C o m p u te r A l< lod T u t o r ia l

C ourses f o r H ls h e r M ^ i-h o m a tic s E d u c a t io n .

53

I n t.h e p r o je c t , a u s e w a s m ade o f t h e e x p e r ie n c e

g a in e d i n d e v e lo p in g 2 ind a p p ly in g TEACHSOFT, a p a cka g e

w r i t t e n t o s u p p o r t te a u :h in g m a th e m a t ic s t o u n d e rg ra d u a te s .

TEACHSOFT w a s o r ig in a l ly * w r i t t e n b y t h e s t a f f o f t h e

I n s t i t u t e o f M a th e m a t ic s an d C o m p u te r S c ie n c e o f t h e KKVMF

in c o n ju n c t io n w i t h s e v e r a l t u t o r s f r o m o t h e r c o l le g e s and

u n iv e r s i t i e s In B u d a p e s t le a d b y D .S im a an d I.F e n yd . The

o b je c t i v e o f t h e s o f t w a r e p a c k a g e w a s d e f in e d a s t o p r o v id e

new t o o ls f o r te a c h in g c o l le g e le v e l m a th e m a t ic s b y m a k in g

u s e o f c o m p u te r a id e d le c t u r in g an d c o m p u te r a id e d p r a c t i c a l

w o rk . TEACHSOFT, w h ic h i s b e in g s o ld t o som e m o re u s e r s in

a n d o u t s id e H u n g a ry , h a s b e e n in u s e w i t h s e v e r a l

u n iv e r s i t i e s s in c e .

CATCHME k n o w le d g e m a n a g e m e n t s y s te m r e q u i r e s a n IBM PC

o r c o m p a t ib le e n v ir o n m e n t . T he p r o je c t i t s e l f s h o w s som e

s im i l a r i t y t o h y p e r t e x t s y s te m s o f w h ic h i t i s t h e c lo s e s t

t o SAVAN CIDe841), a n e le c t r o n ic le x ic o n an d HyperCOSTOC, a

CAT p r o g r a m d e v e lo p e d a t t h e u n iv e r s i t y in G ra z , A u s t r ia . In

c o m p a r is o n w i t h t h e s y s te m s r e f e r r e d t o , CATCHME kn o w le d g e

m a n a g e m e n t s y s te m b o a s ts w i t h i t s r e m o r an d r e k n e l b a s e d

h ie r a r c h ic 2 d k n o w le d g e r e p r e s e n t a t io n , i t s a p p ro a c h t o ta k e

p r o c e d u r e s a s k n o w le d g e e le m e n ts an d i t s la r g e v a r i e t y o f

k n o w le d g e m a n ip u la t in g f u n c t io n s a s n o v e l f e a tu r e s .

54

fBF83] A .B a r- r , E .A .F e Ig e n b a t iin :

T he H andbook o f A r t i f i c i a l I n te l l ig e n c e I . - I I I .

H eurisT E C H P re s s , S t a n fo r d , 1982-83.

ICo87] J .C o n k l ln :

" H y p e r te x t : An I n t r o d u c t io n and S u rv e y "

C o m p u te r , O c t. 1985, pp . 15-30.

[De84I J .L .D e s a lle s :

SAVANT: i ’ e n s e ig n e m e n t a s s i s t s p a r t í ié m a t iq u e

d a n s ia f o r m a t io n d e s in g d n le u r s de I'ENST

L 'E c h o d e s r e c h e r s e s N°117, 1984.

IFS85I I .F e n y ö , D .S lm a:

E in d id a k t is c h e r V e rs u c h zvim U n t e r r i c h t d e r

M a th e m a t ik a n te c h n is c h e n U n iv e r s i t a e t e n und

H o c h s c h u ie n

J a h rb u c h U b e rb l lc k e M a th e m a t ik , 1985 pp. 139-142.

tFo841 R .F o r s y th :

E x p e r t S y s te m s . P r in c ip le s and C ase S tu d ie s

C hapm an and H a ll L td . , L o n d o n , New Y o rk , 1984

[Hu8R] F .H u b e r ;

Hyper-CO STOC : A C o m p u te r—B ased T e a c h in g S u p p o r t

S y s te m

BEYOND NUMBER CRUNCHING T h ir d A u s t r ia n - H u n g a r ia i

I n f o r m a t ic s C o n f. 1988. pp . 2 9 -43 .

References

55

CQS88] A .G y ö rg y , Z s .L u k á c s :

"T e a c h s o f t . " E d u c a t, io n a l P ro g ra m P ackage

S ix t-h I n t e r n a t io n a l C o n g re s s o n M a th e m a t ic a l E d u c a tlo r

B u d a p e s t , 1988.

IN1821 N .J .N lls s o n :

P r in c ip le s o f A r t i f i c i a l I n te l l ig e n c e

S p r in g e r V e r la g , 1982.

ISh871 B .S h n e ld e rm a n :

D e s ig n in g t h e U s e r I n t e r f a c e ; S t r a t e g ie s f o r

E f f e c t i v e Hum an C o m p u te r I n t e r a c t i o n

A d d is o n -W e s le y , R e a d in g , M ass. 1997.

tWaOftJ D .A .W a te rm a n :

A G u ide t o E x p e r t S y s te m s

A d d is o n -W e s le y P u b lls l i ln g C om pany, 1986

56

i

r

DDL and DDS: A Dialogue Design Language and

System for (Prolog) Expert Systems.

János Aszalós, Computing Applications.and Service CO.

Postai Address: 1502 Budapest

SiíJ 112. P.O.B. 146.

Abstract

Expert systems are basicly interactive ones. Interactivi

ty can be approached on many levels and from many points

of view. The paper presents DDS as a tool and DDL as a

language for organizing the dialogue flow of some

dialogue-patterns used in several expert systems. Our

viewpoint is syntactic.

DDS is implemented in Prolog and (now) is used for Prolog-

based Expert Systems. It is an interactive one itself

with some built-in knowledge about dialogue.

Introduction
■

This paper proposes an approach to dialogue-engineering-

In the past 20 years many efforts have been made to

investigate the syntactic, semantic, and psychological.

57

vl/ As our ES-s are /or would be/ implemented /now/ in

Prolog, the DOS, which is also a Prolog application,

has to compile /now/ the DDL sentences into Prolog-

sentences. These restricitons would be lifted in the

future.

2. DDL syntax

The highest syntactic unit in DDL is the DP which is

composed of dialogue-elements /DE/; DE-s are in turn

composed of dialogue-atoms /DA/.

A DA is either a statement /S/, or a question /Q/ or a

command /C/, optionally proceeded by one or more state-

ments /S /.

A somewhat simplified syntax-definition for DAl

<DA> r. <S> I <Q> | <C> .

<S> tc= <sentence-^body> <full stop>.

<Q> <sentence-body> <question-mark>.

<C> <sentence^body> <exclamation-mark>.

<sentence-body> r:= {sel-relnamerelation-name, sel-quali

62

qualificator, sel-modr modificator,

{sel-fill: filler}}

All elements except the relation-name are optionals.

Relationnames, qualificators and modificators are words,

predefined by the expert and/or by the knowledge engi

neer, together with the possible abbreviations, radicals

and synonyms. Fillers are free strings, not containing

the other categories. None of the four categories

/relationname, etc/ may contain <fullstop>,<question-mark>

or <exclamation mark>.

The applicable /natural/ language is not determined by

the syntax.

DA-s are indexed by the initiator, which is either the

user /n/ or the system /s/. For example, (S*S)^ means

a DA composed of one or more statements originated by

the user /input for the ES/; (S*Q)^ is a question

originated by the ES /output/ which can be preceeded by

some statements. The relationname, the qualificator

and/or the modificator of a DA can be represented by

formal parameters, e.g.:

(S)^: "There is a strong indication for X",

63

3. the use and the special features of DDS are presen

ted. We summarize our experiences and future plans in

the Conclusion.

1. Preconditions

i/ There are four individuals who come into picture in

this context:

- the expert,

- the knowledge engineer,

- the computer system /the ES/, and

- the user of ES /probably distinct of the expert/.

ii/ The dialogue is carried out between the user and

the ES, and it follows some "patterns". /The concept

of DP is not to be detailed here; it is similar to

the concept of conversation graph in [HSgglund, 80]

or to the frames in [Bobrow, 77]/. The DP-s depend

mainly on

- the problem classes to be handled by the ES,

- the problem-solving strategies,

the knowledge of the ES,

the model of the ES and that of the end-user as

60

they exist in the mind of the expert.

iii/ There are but a few DP-s for an ES, and they are

known for the expert. /Some general information

about DP-s are known for the DDS as well./

rrCi-1

iv/ The expert wants to describe his knowledge about

DP-s and weuits to ccxmnunicate it to the ES in a

flexible manner just as his expertise. Therefore,

he would welcome a language and a software tool

for this purpose! t^ese are offered him in DDL and

DDS.

v/ The language must be rich enough to represent all

the necessary elements and constructors for a

restricted set of DP-s, but must be simple enough

for an expert, say in medicine, who is unskilled

in using formal languages. Therefore, he would li

kely accept the help of an interactive emd self-

explaining system. /The "restriction" mentioned

above is the consequence of the restriction on the

topics! we want to formalize ES-dialogues cuid not

those of, say, Shakespeare-dramas./

61

methodological, organizational etc. aspects of this kind

of engineering. These investigations are carried out

either on sentence-level, or on the level of mutual

understanding, or on the level of the whole conversation,

etc.

Our approach focuses mainly on syntactic problems {to

gether with some semantic considerations) on the level

of the dialogue-patterns (DP). A DP is a linked *set”bf
I

Dialogue Elements (DE, see later), that form one or more

paths possibly with cycles. The path to be followed

during an actual dialogue is defined by the syntax of the

user input at each DE, and by the knowledge incorporated

in the DP, which interprets the user input, organizes the

output and the transition to the next DE in the path.

The "output" of this work are a language definition for

organizing the dialogue (DDL: Dialogue Design Language)

and an inteirpreter and compiler for the language

(DDSr Dialogue Design System).

(The work was carried out under the control of mesd -

Methodology for Expert System Development - based on a

concept of the "activity" elaborated in view of the

cognitive psychology, system-theory and AI: see

56

1

[Aszalós, Gergely, 83]. Due to this support our work has

its methodological, psychological and organizational

fundaments of its own.)

Present expert systems usually offer various tools and

languages for describing the knowledge in form of rules,

nets, etc., but few of them /e.g. [Bateman, 83]/ present

similar tools for defining the necessary dialogue-flow

for cooperative problem-solving. The purpose for deve

loping DDL and DDS is to add the corresponding new ele

ment to the building-kit of our ES-development project.

As usual, the dialogue-frame of an ES is wired into the

system or it is implemented as a stibsystem by the

programmer. Following our methodological considerations

/which are not to be detailed here/ the responsibility

of organizing the dialogue falls upon the expert and the

knowledge engineer, just as that of defining the

knowledge. Therefore, DDL and DDS is for the use of the

expert, who is aware of the necessary dialogue-patterns

but is unaware of the programming requirements.

The paper is organized as follows. In 1. we describe some

preconditions and restricitions for using DDS. In 2., the

syntax of DDL is illustrated by some examples. Then, in

59

where X would be turned into a name for an illness du

ring the run-time.

A DE is a sequence of DA-s with alternating index. For

example, (Q)„; (S*S) ; (S) is a typical DE: the user n s n

puts a question /(Q)^/, then the system answers /(S*S)g/-|

and finally the user acknowledges or refuses the answer

n s) j .

DE-s are represented by frames. A frame in this context

is a list of the following slots to be filled by the

expert and/or by the knowledge engineer:

NAMEi

INPUTi: /i=l,2.../

OUTPUTi: I±=1,2...I

TESTii I±=1,2...I

GLOBVARS: "A

LOCVARS t

USE:

DEF:

CONTROL:

> declarations

64

Each DE has a unique NAME. LOCVARS can be accessed

inside of the frame only; GLOBVARS inside and outside

of the frame. The sequence of the INPUT and OUTPUT /and

probably other/ procedures are determined in CONTROL. If

there is a need for performing extra procedures or func

tions for elaborating the parameters, storing some inter

mediate results, printing, etc., the expert can insert

the call for these procedures or functions into the

CONTROL or TEST slots, but previously he must declare

their names in USE or define them in DEF. There is a

set of standard procedures and functions which can be

used without declarations, e.g. logical functions,

arithmetic procedures, string manipulation, etc.

-l:

An example for a menu-driven DE:

NAME:, fever.

OUTPUTl: "Is the patient in fever?

it" 1. / no,

2.1 s\ibfebrilis,

3.1 febrilis."

INPUTl 1 PN, [PN is a standard variable for

positive integers]

65

TESTI : PN á 3. [All TEST-s are interpre

ted as logical functions]

0ÜTPÜT2 : "OK".

0UTPUT3 : "NOT NUMERIC VALUE OR OUTSIDE OF

THE SCOPE. ENTER AGAIN!"

CLOBVARS : X.

CONTROL ; OUTPUTl;

A; INPUT1;

IF TESTI THEN OUTPUT2, X:= PN,

GOTO B; IF NOT TESTI THEN

OUTPUT3, GOTO A;

B:. END.

CONTROL represents a program in DDL which can be easily

composed even by unskilled users /say, by an expert in

medicine, geology, etc./.

A DP is a net, composed of nodes and directed arches,

with one START and one END node. The nodes represent DE

frames /one-one correspondence/; the arches represent

"transition conditions" between two nodes.

One node may belong to several DP-s. The messages bet

ween DP and its nodes are transferred via global variab-

66

les.

The specification of a DP contains the following items:

. NETNAME /must be unique/,

. declarations /see DE description/,

. list of node-names, together with their "preconditions",

. TRANS: transition conditions between nodes.

To avoid redundancy, the performance of the nodes are

specified outside of the DP-s. Inside of the DP-net,

only their names and the necessary elaboration of the

appropriate global parameters are described. /This is

the task of the "preconditions"./

To illustrate this point, we would specify a partial DP

corresponding to Fig. 1.

67

I

The nodes correspond to DE-s; the arches are indexed

with the possible values of the "fever" node global

variable X /see the previous section example/.

Specification of the DP "anamnesis":

NETNAME: anamne s i s.

GLOBVARS: X,Y

NODE: START.

NODE: fever.

TRANS:. IP X=1 OR X=2 THEN GOTO hepatosis

suspected;

TRANS:. IF X=3 THEN GOTO stricture

[The last 2 conditionals represent the

transition conditions corresponding

to the arches.]

NODE:, hepatosis suspected [Y is the input-

output parameter

of this node]

PRECOND:. IF X=1 THEN Y:= 'no fever' ELSE

Y:= 'subfebrilis'.

TRANS: IF Y=...[list of transition conditions]

NODE:, stricture.

68

r
Multi-level DP-s

The CONTROL slot of a DE may contain a call for a DP

/"call <DP-name>"/. Thus a dialogue represented by a DP

may fire several sub-dialogues, which in turn may fire

again sub-sub dialogues, etc. Thus a multi-level dialo

gue can be organized and controlled by DDS. This is

necessary for ES-s because of the hierarchical structure

of the ES dialogues. Recursivity is allowed.

3. DDS; a Dialogue Design System

DDS is composed of five parts;

i/ compiler,

ii/ run-time procedures,

iii/ knowledge-base,

iv/ house-holding procedures,

v/ self-explanation subsystem.

The compiler translates the DP-s and DE-s into Prolog

sentences.

59

More precisely, it

a/ creates special data structures

/=Prolog statements/ for each GLOBVAR, LOCVAR,

NODE and NETNAME,

b/ translates the DDL sentences /=INPUT, OUTPUT, t

TEST declarations, preconditions and transcondi

tions/ into Prolog procedure calls,

c/ creates the necessary Prolog procedure defini

tions, e.g. those corresponding to the CONTROL

slots.

The task of the run-time procedures is

a/ to handle the created data structures,

b/ to elaborate the input-output parameters,

c/ to select the next DP or node to be processed,

according to the transition-conditions.

The changeable knowledge-base of DDS /not yet ready/

would contain some predefined DP-s /a QA pattern,

explanation-pattern etc./ together with some procedures

for the knowledge base management.

70

The house-^holdlng procedures serve for storing, resto

ring, deleting, replacing etc. functions.

The self-explanation subsystem offers the possibility

of easy use of DDS for beginners, and contains a simple

HELP subsystem as well.

As DDS is an interactive system, it is based on a two-

level DP structure. In its last version, it uses all the

features of DDL as well.

Conclusion

DDL and DDS offer a restricted but easily applicable set

of tools for dialogue engineering. In their next state

of development they would present the following new

features t

i/ a graphic language for DP definition,

tif the knowledge base for basic DP-s,

iii/ an "intelligent" natural language interpreter,

iv/ Prolog-independence.

71

DDL and DDS have been used for the development of an

ES for gastroenterological diagnosis, and for the last

version of DDS itselt. Both are developed in SIEMENS-

BS2000, but will run in microcomputers.

;.'*1

72

References

Aszalós, Gergely 83:. Aszalós J. and Gergely T,:

Activity-based Approach to Expert

Systems and to their Knowledge,

in Proceedings of ISAI Conference,

Leningrad, 1983. Pergamen Press,

/to be published/.

Bateman, 83: Bateman, R.F.:

A translator to encouraqe user

modifiable man-machine dialog, in

Designing for Human-Computer

Communication /Sime S Coombs eds/.

Academic Press, London, 1983.

Bobrow, 77: Bobrow, D.G.:

GUS, a Frame-Driven Dialog System.

Artificial Intelligence, Vol. 8,

no. 2, apr. 1977.

Hagglund, 80: HSgglund, S.:

Contirbutions to the Development of

73

Methods and Tools for Interactive

Design of Applications Software.

PhD dissertation, Linköping Univer

sity, 19Ő0

74

NeurFrame: Simulating neural nets with MPROLOG

János Rácz
SzKI Computer Research and Innovation Center

H-1015 Budapest, Donáti u. 35-45.
18 Januar 1989

Abstract■ Ab

Artifical neural net models have been studied for many years in
the hope of achieving human-like performance in the fields of
speech and image recognition. These models are composed of many
nonlinear computational elements operating in parallel and
arranged in patterns reminiscent of biological neural nets.
Computational elements or nodes are connected via weights that are
typically adapted during use to improve performance. There has
been a recent resurgence in the field of artifical neural nets
caused by new net topologies and algorithms, analog VLSI
implementation techniques, and the belief that massive parallelism
is essential for high performance speech and image recognition.

This paper provides an introduction to the field of stucturing
the neural nets to solve some image processing. I use an initial
structure to define the neural net topologie. I simulate the
neural net models with MPROLOG .-

IHTRODDCTION

Artificle neural net models or simply 'neural nets' go by many
names such as connectionist models, parallel distributed
processing models, and neuromorphic systems. Whatever the name,
all these models attempt to archive good performance via dense
interconnection of simple computational elements. In this respect,
artifical neural net structure is based on our present
understanding of biological nervous systems. Neural net models
have greatest potential in areas such as speech and image
recognition where many hypotheses are pursued in parallel, high
computation rates arre required/ and the current best systems are
far from equaling human performance. Instead of performing a
program of instructions sequentially as in a von Neumann computer,
neural net models explore many competing hypotheses simultaneously
using massively parallel nets composed of many computational
elements connected by links with variable weights.

Computational elements or nodes used in neural net models are
nonlinear, are typically analog, and may be slow compared to
modem digital circuitry. The simplest node sums N weighted inputs
and passes the result throught a nonlinearity as shown in Fig.l.

The node is characterised by an internal threshold or offset
and by the type of nonlinearity. Figure 1 illustrates three common
types of nonlinearities; hard limiters, threshold logic elements,
and sigmoidal nonlinearities. More complex nodes may include
temporal integration or other types of time dependencies and more
complex mathematical operations than summation.

75

SIGMOÍID

rig. L
HARD LIM ITER THESESHCLD LOGIC

Neural net models are specified by the net topology, node
characteristics, and training or learning rules. These rules
specify an initial set of weights and indicate how weights scnould
be adapted during use to improve performance. Both design'
procedures and training rules are the topic of much current
research.

Work on artifical neural net models has a long history.,|
Development of detailed mathematical models began more than 40
years ago with the work of McCulloch and Pitts [6], Hebb [2],
Rosenblatt [10], Widrow [14] and others [9]. More recent work by
Hopfield [3,4,5], Rummelhardt and McClelland [11], Sejncwski [13],
Feldman [1], Grossberg [8] and others has led to a new resurgence,
of the field. This new interest is due to the development new net"
topologies and algorithms [3,4,5,12,1], new analog VLSI
implementation techniques [7], and some intriguing demonstrations.
[13,5] as well as by a growing fascinacion with the functioning of!
the human brain. Recent interest is also driven by the realisation]
that human-like performance in the areas of speech and image]
recognition will require enormous amounts of processing. Neural^
nets provide one technique for obtaining the required processing,
capacity using large numbers of simple processing elements
operating in parallel.

NeurFrame: Simulating neural nets with MPROLOG

NeurFrame (an empty frame for simulation of neural nets) hasi
the following aim;

to give an empty frame for simulation of all kinds of neural'
nets with

- dynamical modification of stucture, model and algorithm
- possibility for free experimentation
- possibility for meta-frame declaration:

. - heuristics for neural net modification
- learning algorithms
- possibility for genetic algorithms

The System Architecture is shovm on Fig. 2.

OUTPUT UNITS

The two main part of the system are NeurFrame Interpreter and
the knowledge base for neural net informations. The three main
elements of "conventional" (as shown in Fig. 1 and Fig. 3) neural
nets ares

- the topology of the system
jj.- the learning algorithms
■ - the information processing algorithms.

The system based on
- INTEL 80386 based computer (16 Mhz or more)
- MProlog version 2.3.
- MProlog E-Shell (MProlog Execution Shell)

The NeurFrame realises
- possibility to use "Query the user" technique
- how and why questions
- fast natural language interface
- trace techniques
- incremental system development

STODiARY

The NeurFrame offers a good experimental system for modelling
neural net architectures. At present it works a little slowly. To
speed up in the future I would use the external language
interfaces to get a faster arithmetics and for making a fast
simulation for static parts. For more information about the system
please contact the author.

Trademarks; MProlog is registered trademark of SzKI, Intel is
registered trademark of Intel Corporation

77

REFERSNCES

[1] J.A.Feldmaan and D.H.Ballard, "Connectionist Models and Their
Properties",Cognitive Science, Vol.6,205-254,1982.

[2] D.O.Hebb, The Organisation of Behavior, John Wiley S Sons,
New York ,1949.

[3] J.J.Hopfield, "Neural Networks and Physical Systems with
Emergent Collective Computational Abilities",Proc. Natl.
Acad. Sci. USA, Vol. 79, 2554-2558, April 1982.

[4] J.J.Hopfield, "Neurons with Graded Response Have Collective
Computational Properties Like Those of Two-State
Neurons",Proc. Natl. Acad. Sci. USA, Vol.81, 3088-3092, may
1984.

[5] J.J.Hopfield and D.W.Tank, "Computing with Neural Circuits: A
Model", Science, Vol 233, 625-533, August 1986.

[6] W.S. McCulloch, and W. Pitts, "A Logical Calculus of the
Ideas Imminent in Nervous Activity." Bulletin of Mathematical
Biophysics, 5. 115-133, 1943.

[7] C.A. Mead, Analog VLSI and Neural Systems, Course Notes,
Computer Science Dept., California Institute of Technologie,
1985

[8] S.Grossberg, The Adaptive Brain I:Cognition, Learning,
Reinforcement, and Rhythm, and The Adaptive Brain II: Vision,
Speech, Language, and Motor Control, Elsevier/Nort.h-Holland,
Amsterdam 1986.

[9] T.E.Posch, "Modells of the Generation and Processing of
Signals by Nerve Cells: A Categorically Indexed Abridge
Bibliography", USCEE Report 290, August 1958.

[10] R. Rosenblatt, Principles of Neurodynamics, New York, Spartan
Books 1959.

[11] D.E Rummelharrt, G.E. Hinton, and R.J. Williams, "Learning
Internal Representations by Error Propagation" in D.E
Rummelhart & J.L. McClelland (Eds.) Parallel Distributed
Processing: Explorations in the Microstucture of Cognition.
Vol. 1: Foundations. MIT Press 1985,

[12] D.E Rummelhart S J.L. McClelland (Eds.) Parallel Distributed
Processing: Explorations in the Microstucture of Cognition.
Vol. 1: Foundations. MIT P* 1986.

[13] T. Sejnowski and C.R. Rosenb^.g, "NETtalk: A Parallel Network
That Learns to Read Abound", John Hopkins Univ. Technical
Report JHU/EECS-85/01, 1986.

[14] B. Widrow, and M.E. Hoff, "Adaptive Switching Circuits", 1950
IRE WESCON Conv. Record, Part 4, 96-104, August 1950.

■
F o r m a l i t y I n S o f t w a r e S p e c i f i c a t i o n s

AttUa Faricas & László Kiss

Advsinced Systems Department
Central Research Institute for Physics
P.O. Box 49 Budapest 1525 HUNGARY

ABSTRACT * In tiying to cope with the ever growing size and complexity of ap
plications, the software community seeks new ways to overcome the dilHculties in
volved. Formality seems to be a promising paradigm for remedying the acute prob
lems of the software process. The idea of formal software development is not new,
Automatic Programming lAP). a classical branch of Artiftcial Intelligence (All. has
dealt with related problems for four decades. However, to make formal software de
velopment applicable for realistic applications, there is a need for lurther experience
and researches in which AI and Software Engineering (SEl interweave. A crucial
point of the software process is the method of specification, which is the main
theme of this paper. In the first part, a review of the software process is given with
an emphasis on specification related problems. It is followed by an overview of
practical and experimental specification methods. Finally, a brief survey of formal
specification languages is presented.

L I N T R O D U C T I O N

The methods and tools In SE are In
permanent advance, but more and
more complex applications are under-
tiiken, so the problem we call software
crisis is not an issue of the past.
Software is rarely produced on time or
within budget, and when delivered it
often fails to meet the users' needs.
Two major problems have been identi
fied as being responsible for the ma
jority of software project failures. These
occur during requirements specifica
tion and maintenance, two highly iter
ative phases of the software life cy
cle, i-w
Errors committed during requirements
specification are particularly danger
ous as further steps of the develop
ment process (l.e. design and imple
mentation) heavily depend on this
stage. The later a specification bug Is
revealed the more the fixing can cost. A
l̂eclflcatlon bug revealed during de

sign or implementation phase may lead
to redesigning or reimplementing sig
nificant parts of the sj t̂em, or it can
even cause the failure of the whole
project.
The life of a system does not end with
delivery, possibly a number of modifi
cation needs arise when the system is
in use. The major source of problems
in this phtise. called maintenance,
seems to be that modifications are
performed on the source code. It is
tough going even if proper specification
and documentation of the system ex
ists (i.e. agreeing with the code), since
the correspondence between these
documents and the opdmized source
code can hardly be traced.
Due to the increasing number and size
of software projects, the above prob
lems are even more disünct today. The
software development process is be
coming manually unmanageable: there
is an urgent need for automation and

79

automatic aids. Besides making the
traditional approach in SE (l.e. the
waterfall model eind related methods)
more perfect, the software community
seeks new paradigms (e.g., rapid pro
totyping, operational approach) for the
software process. The quest for au
tomation has led to research in the ar
eas of development methodologies,
specification and implementation lein-
guages. and automatic management
aids. As a result of this research, more
formal approaches emerged in which
the specification has gained a more
prominent role.
Creating a specification is by no means
a trivial task, and is particularly less
so when specifications are becoming
more formal. The creation of a specifi
cation Involves understanding the
problem at hand and rephrasing the
relevant knowledge in the adopted
specification language. A good specifi
cation language should facilitate both
of these activities.
This raises three concerns about spec
ifications. First, what should a good
specification contain? Second, what is
a good specification language like?
Third, what kind of techniques should
be used to create a specification?

This paper, giving a survey of specifi
cation languages and methods, exam
ines how ideas from mathematics, SE
and At Influenced the answers to these
questions. In the next section a brief
overview of software development ap
proaches is given. In Section III specifi
cation methods and techniques are
discussed. Section fV presents a brief
overview of formal specification lan
guages. and finally a conclusion is
drawn on the directions of future de
velopments.

n , T H E S O F T W A R E P R O C E S S

The objective of this section is to illus
trate how fonnál methods are coming
into prominence in SE as a promising
paradigm for remedying the acute
problems of SE. In the following, clas
sical and new SE problems, ap
proaches cind perspectives are dis
cussed.
T h e s o f t w a r e crisis. The object of
software engineering is the study and
evaluation of techniques that efficiently
and cost-effectively produce reliable
software products to satisfy the users'
needs. While we have good methods
and tools for programming in the
small, there are major difficulties in
developing large-scale software sys
tems. Software is rarely produced on
time or within budget, and when deliv
ered it often fails to meet the users'
needs. Another problem is that with
the increasing number of applications,
the maintenance of existing softwares
lays an ever growing burden on soft
ware companies. The existing software
development tools and methods can
not cope with the new applications of
ever growing size and complexity.

The most widely used, and most well-
understood general method for system
development in SE is the waterfall
model. According to this model, the
software life cycle is divided into six
phases. These are; requirement under
standing, requirement specification,
design, coding, testing, and mainte
nance.
Two main problem areas have been
identified as being responsible for most
part of software project costs. These
cire usually referred to as the require
ments problem and the maintenance
problem, In the rest of this section
these problems are characterized.

80

T h e r e q u i r e m e n t s p r o b l e m . The first
tEisk during the softw2u-e development
process is understanding the current
users environment, its deficiencies,
and the requirements Imposed on the
software system to be built. Acquiring
all the necessary information from the
users is not a trivial problem. The dlfll-
cultles partly Ue in the different profes
sional backgrounds of the computer
experts carrying out the requirements
analysis and the users of the current
system. Users are possibly not skilled
in computer sciences and system ana
lysts do not know the application do
main. Misunderstandings occurring
frequently during requirements specifi
cation originate mainly from this com
munication bottleneck. Furthermore,
the great amount of information han
dled during requirements specification
needs some means of managing. As
faults committed in this early phase of
the software development process are
very costly considering both time and
money, elimination of these problems
has become a very intensive research
area.
A d v a n c e s I n t h e c o n v e n t i o n a l a p
p r o a c h . Research striving for improv
ing the conventional approach first
made it clear that it is worth spending
more time with the specification of re
quirements and start coding only after
ensuring that the specification reflects
the right requirements. Requirements
specification has become a highly iter
ative process in which feedback from
end users is of high importance. To
improve communication, which pro
ceeded mostly in natural language in
early times, new means of communi
cation have also been developed.
Though natural language communica
tion has its obvious advantages, for
example, it is the most convenient way

of stating requirements and producing
the documentations for the users, this
approach has its own drawbacks.-'i
Natural language texts are subject to
contain ambiguous and contradictory
statements, which are hard to recog
nize. Users eire reluctant to read big
three ring binders, even if the text is
well structured, so the documentations
specifying the proposed system are of
ten poorly criticized. In trying to im
prove the communication facilities,
methodologies provide more and more
automated tools and techniques sup
porting problem understanding and
problem solving.
The evolution of the waterfall model
has led to methodologies in which a
larger amount of time is spent with de
veloping specifications and the vali
dation of the specification has a greater
emphasis. Efxperiences have shown
that these amendments, though bene
ficial, have not solved the communica
tion problem satisfactorily.

A fundamental and inherent problem
undermining the conventional ap
proach is that it uses only "static"
means of communication (e.g., natural
language documents, diagrams).
Although the various documents com
prising the specification may be appro
priate for defining the proposed sys
tem, validation of the system relying on
merely paper-based descriptions is of
ten tnsufllclent. The user cannot gain
deep understanding of the system's
operation. Some way should be found
to support the "visualization" of the de
sired operation. Furthermore, specifi
cation checking facilities provided by
this kind of "seml-formallzed" tech
niques are of limited scope. CASE
(Computer Aided SE) tools are also of
limited skill due to the Inherent defl-

81

clencles of the manual techniques they
automate.

A l t e r n a t i v e m o d e l s . Alternative ap
proaches conveying new paradigms
have been developed for overcoming
the drawbacks of the conventional
model. The conventional model and the
proposed alternatives attack different
aspects of the original requirements
problem. Namely, the conventional ap
proach lays stress upon requirements
specification to reduce the number of
specification bugs turning up in the
time consuming and costly coding
phase (or even later In the life cycle).
Several alternative approaches try to
reduce the cost of possible relmple-
mentatlons by facilitating coding in
various ways, while others try to test
(e.g. validate and verify) the specifica
tion rather than the code. The most
common alternatives to the conven
tional life cycle model are the following;
Very high level language (VHLL) ap
proach. A very natural approach to
automating the development is to con
tinue the historical evolutionary trend
In developing ever more powerful and
expressive programming languages;
this Is the very high level programming
language approach.< The advantages
achieved by programming In a VHLL
are typically the Implicit specification
of control flow and the high level data
referencing. Programmers using a
VHLL can write programs with few er
rors. However. VHLLs are difficult to
use If the application domain is not
well understood.

Application generators (AGs). Another
approach to improve software produc
tivity is to use application generators.®
AGs support primarily data processing.
They possess all the "knowledge" about
a special problem class, and therefore
can be "programmed" In a very high

level, special purpose language in or
der to quickly generate a program. A
well-known example is the IBM's RPG.
AGs can be viewed as very simple fore
runners of knowledge based automatic
programming systems.

Operational approach. The operational
approach is an alternative paradigm
for implementing systems®'̂ . In this
approach, in contrast with the conven
tional development, the specification is
executable. It describes the behaviour
of the target system and it can be ex
perimented with. The behaviour of that
system may be modified by altering the
specification. When the specification
has been accepted as valid, an efficient
implementation can be produced®.
Rapid prototyping. The operational ap
proach is strongly connected with the
idea of rapid prototyping, since the ex
ecutable specification serves as an ini
tial version of the target systemaio
Rapid prototyping can also be used as
a tool in the conventional approach to
make the users' demands clear.

Many of the alternative approaches
enumerated above are still in an e.x-
perimental state, lacking the maturity
of the conventional approach. None of
them are a full-fledged method span
ning the whole software process, and
they lack integrated automated aids
commonly available for conventional
methodologies.

The maintenance problem. Though
the development of the above ap
proaches eased the requirements
problem to some degree, it did virtually
nothing for eliminating the equally se
rious maintenance problem. These ap
proaches provide only "implicit" help; a
well-designed, well-implemented sys
tem with good documentation is easier
to maintain. However, these Improve-

82

ments stin seem to be Insufficient. The
maintenance phase, which starts when
the software product has been deliv
ered for use. usually constitutes more
than 60 percent of the life cycle
C 0S t.lA Il

Maintenance has two basic facets;
tracking down and removal of bugs
that show up. and modifications to
meet environmental changes. Though
the two kinds of maintenance activities
may diverge in details, they can be de
composed similarly on the top level. A
maintenance event can be divided Into
three successive though not entirely
distinct parts;

• First the problem necessitating
maintenance needs to be understood.
The cause of a problem may be a soft
ware malfunction caused by either a
misunderstood requirement or a bug m
the source code, or some changes In
the users envlronment/requlrements.

• The next step is to Identify those
highest level parts in the documenta
tion hierarchy (including the specifica
tion. different level designs, zmd the
source code) which are still affected by
the particular malntenanee activity. It
may be the case that modifications af
fect the source code only (bug elimi
nation). the system design as well
(software/hardware changes), or even
the specification (requlremental
changes).

• After Introducing the required
modifications at the highest level,
changes must be propagated through
the lower levels until a new Imple
mentation. agreeing with the docu
mentation and satisfying the mainte
nance demands. Is obtained.

Although maintenance Is not free from
the type of errors discussed at the re
quirements problem, they are less

characteristic here than at the specifi
cation phase where the problem of un
derstanding requirements dominates.
The laborious nature of maintenance
derives from the need to understand
and modify already existing large, co
herent structures. What makes main
tenance difficult, and different from
development-time modifications. Is
that modifications must always be
propagated as far as the level of code.
Navigating through the documentation
set and finding the relevant parts are
Impeded by the eommon situation that,
despite the fairly good specification,
design, and implementation tools and
techniques, the dependencies among
these different level descriptions are
vague and poorly documented. The
problem Is that there is no presently
available technology for managing
knowledge-intensive. Informal pro
cesses like software development. As a
result, infonnatlon about the develop
ment process and the rationale behind
decisions is mostly unavailable. It Is a
particularly sore problem when we
have to perform modifications on the
source code. During coding and tun
ing. much labour Is expended on opti
mizing the Implementation. As a side
effect of these optimizations, the rela
tionship among the source code, the
design and the specification becomes
largely obscured. It Is hard to track
down related code chunks without
knowledge about optimization deci
sions. for optimization often scatters
logically connected parts of the code.
These deficiencies make the software
hard to understand for the mainte
nance team which. In addition, fre
quently consists of completely new
people In the system’s life.

One possibility for reducing the costs
of maintenance is reduemg the number

of maintenance events. Methods em
phasizing ecirly operation such as rapid
prototyping emd executable speciflca-
tlons support early bug detection,
thereby decreasing the number of bugs
emerging In the maintenance phase.
Well-built systems decrease the costs
of transplantations to new soft
ware/hardware environments, so ap
proaches supporting the development
of portable systems (e.g. application
generators, reusability) alleviate this
problem to some extent. A prudent de
sign can take Into account the foresee
able requlremental/envlronmental
changes.
A promising way of giving a more per
fect and overall solution to the mainte
nance problem is to Increase the level
at which maintenance is performed. In
(2) the authors argue that the satis
factory solution would be to maintain
directly the specification eind reimple
ment the system with automated sup
port. However, it demands a new, au
tomation based paradigm for software
development.
Automation based software devel
opment. The necessary degree of re
duction In software development costs
can hardly be expected of enhancing
the manual process, some kind of au
tomated support is needed. The most
ambitious endeavours aim at full au
tomation, that is, code generation from
the specification vrtthout human as
sistance. However, the approaches
picturing the development of the im
plementation as an Interactive process
are more feasible for the near future,
for automatically generating efficient
code from high-level specifications is
far more difficult than compiling high-
level programming language code.̂ A
large number of alternatives have to be
considered at each development step

on the way from specification to code,
and, due to the wide gap between high-
level specifications and implementa
tions. It is very hard to tell how each
alternative affects the global properties
(e.g., efficiency) of the final product.
According to the Interactive develop
ment approach, the programmer
makes all the critical high level deci
sions by selecting from Implementation
options offered to him by the code gen
erator at the proper tlme.s Making use
of this Information, the code generator
gradually transforms the Initial high-
level specification, via a series of in
termediate level specifications, into a
low-level specification which can be
automatically compiled into efficient
code.
According to this approach, during
maintenance, any modification is In
troduced first at specification level, and
then the modified specification is re
fined down to a new design and Im
plementation. In this way, performing
maintenance directly on the specifica
tion means that the amount of work
needed to propagate specification
changes through design and Imple
mentation is significantly cut.

m . S P E C I F I C A T I O N M E T H O D S

As it appears from the previous sec
tion's overview of the software process,
requirements specification has a dis
tinctive role in software development.
The final quality of the specification
(e.g., precision, consistency, relevance)
and the overall work required to de
velop it highly depends on the method
by which the specification is con
structed. This section surveys specifi
cation methods and techniques cur
rently used and experimented with.

S p e c i f i c a t i o n I n p r a c t i c e . Practical
methods are essentially based on the
support of human problem solving and
problem understanding processes. In
order to improve the efficiency of the
program development process we
should first understand the mecha
nisms Inherent to human cognitive ac
tivities. The research done In this area
tends to interweave with A1 research.
In seeking better specification meth
ods, specification methods applied in
current practice serve as a natural
starting point.
Practical specification methods Involve
natural language communication sup
ported with formal elements where
these are naturally applicable. The
specification method Is often Interac
tive - checking hypotheses, pointing
out Inconsistencies, and asking the
user for further information.

The analysts armed with their skills,
various techniques and automated
aids and guided by the choreography
prescribed by the adopted development
methodology produce an informal de
scription of the required system. This
description serves as the system speci
fication for the design-
ers/programmers. The techniques and
support tools used In the requirements
specification process are based on
common human "stunts" of thinking.
During specification, it Is a commonly
used technique to help explanation
with some drawings. Both users and
analysts show a preference for de
scribing structural (organizational) in
formation with various kinds of dia
grams. The use of diagrams Indicates a
kind of "natural" need for some for
mality to help explanation and under
standing. To satisfy the need for such
"thinking aids" and to provide the de
velopment team with a unified means

of communication, practical method
ologies now offer several stand2ird dia
gramming techniques (data flow, con
trol flow, structure chart, etc.) together
with instructions for their use.
However, these diagrams often have
loose semantics, as they can be used
in several ways to describe the same
information. Another problem is that
the various diagrams in a specification
are hard to cross-check by lack of an
underlying framework connecting
them. Ehqjeriences with CASE tools
have also identified the lack of power
ful formal models from behind these
tools as the obstacles of providing more
substantial computer assistance.
Advantages of increasing the formality
in specifications can be summarized as
follows;
• Rephrasing parts of the natural

language specification in a formal lan
guage allows establishing consistency
criteria to detect internal Inconsisten
cies in the acquired information.
• The structured, formalized meth
ods analyse the system from several
points of view (e.g., flow of data, con
trol structure, etc.). The redundancy
Introduced by multiple views helps en
sure the completeness of information.
Besides, the comparison of information
captured by the different views pro
vides additional consistency criteria.
• Formalization of the information

gathered about the system Is a kind of
problem solving activity, during which
a number of questions are drafted in
the system analyst's mind. As difficul
ties In specifying the requirements de
rive from the fact that users can not
differentiate between information rele
vant and Irrelevant for analysts. It Is
vital that the questions of the analysts
govern the user interviews properly.

85

• Applying structured and formal
ized methods usually means that con
siderable parts of the gathered Infor
mation Is expressed in the form of dia
grams. The diagrams used in method
ologies tend to be of simple structure
In order to be intelligible for users too.
Experiences have shown that the will
ingness of users to participate in the
tiresome validation process signifi
cantly grows when the material to be
validated Is given In some graphical
form.
• Formalization of the specification

allows the application of computers
from very ezirly phases of the life cycle,
e.g. requirements analysis and specifi
cation. It gives rise to writing programs
that check the requirements for com
pleteness and consistency or support
the drawing of diagrams involved in
specifications.
Taking a rather technical and manage
rial point of view, it is important to
represent specifications in some exact
way for several reasons:
• For the storage capacity of a hu

man’s memory is limited, a description
is needed which presents the informa
tion in a form easy to comprehend and
manage.
• Members of the development team

need to rely on each-other's work.
Thus the specification must be a de
scription of the "digested" information,
l.e., containing ordy the relevant infor
mation organized in a way easy to un
derstand.
• Regardless of the extent of the

formality, a specification may be re
garded as the basis of a "contractual
agreement" between the two parties
who want the system built and the
parties who will actually do the build
ing.

S p e c i f i c a t i o n f o r f o r m a l d e v e l o p
m e n t . Formal software development is
a process during which a formal de
scription (e.g., one with precise syntax
and semantics) of the users require
ments is produced, and then starting
from this formal description, a target
language program is constructed by
some formal method (e.g., theorem-
proving, gradual transformation). The
process of constructing the program
may be manual, fully automated, or
partially automated allowing high level
decisions to be made interactively. The
process of constructing the formal
specification may also proceed
"manually, when the analyst directly
puts down the requirements in some
formal language, or with computer as
sistance, automatically converting in
formal to formal.

Formal specification methods. Formal
specification methods are those re
quiring the analyst to rephrase infor
mally stated requirements in a lan
guage with precise syntax and seman
tics. Depending on how the develop
ment proceeds from the specification,
these formal languages can be grouped
into two classes.
When the theorem proving approach is
adopted for the development, the spec
ification language is some logic-based
language. Here a program is specified
as

Vx (P(x) —> 3y Q(x,y))

which states that for all values of input
variables to the program, x. for which
the predicate P(x) is true, there are
output variables, y, such that Q(x,y) is
true. This expression would then be
given to a theorem prover that pro
duces a proof of the statement from
which a program can be extracted as a
side effect. >3

86

When the more promising transforma
tional approach Is used for program
development, the specification is writ
ten hi some so called very high level
language. These languages encourage
the use of entitles that are not immedi
ately implementable on a computer, or
at least not implementable with some
desired degree of efficiency. The pro
gram then Is developed from the formal
specification via a series of small re
finement steps. Inspired by the pro
gramming discipline of stepwise re
finement;

So — > S i — > ... — > S „ — > P

where Sq is the formal specification, P
is the program written in the target
language and Sj (1 = 1.....n) are inter
mediate level descriptions. Each re
finement step (Si —> Sj+i) captures a
single design decision. If each Individ
ual refinement step can be proved cor
rect. then the program P itself is guar
anteed to be correct.
The application of formal specification
languages also needs tools and tech
niques commonly used in practical
specification methods. Though specifi
cation in a formal language has its own
advantages, it also raises new prob
lems not typical of Informal tech
niques. Namely, informal techniques
lack the rigour of programming lan
guages, whereas formal languages lack
the ease of expression permitted by
informality. Research has been di
rected towards combining the advanta
geous features of both approaches.
On the one hand, formal specification
languages with ever more convenient
syntactic and semantic constructs are
being developed. A more thorough dis
cussion of these languages is pre
sented in Section IV. Other research,
mainly in the field of Expert Systems

(ES) applications, atm at automating
the process of converting Informalty
stated requirements into a formal de
scription. Next, to Illustrate this re
search, several experimental systems
are described. These systems utilize
various techniques commonly used by
analysts during the requirements
specification phase.

Matured language specifcatlon. Natural
language is the basic means of com
municating requirements. As require
ments come from the user mostly In
this form, any specification method
has natural language as its base, re
gardless of the form in which the ac
quired information is finally repre
sented. A significant part of the ana
lysts' job is the translation of the natu
ral language requirements Into a for
mal representation. A seducing way to
make specification easier is to entrust
this job to an automated system.
That Is why intensive research has
been pursued with natural language
specifications. A number of experi
mental systems have been developed in
this area.'s Generally speaking, these
systems take some natural language
text as Input and, mostly after an in
teractive dialogue, have as their output
a formal description of a program to be
written. Two classical systems cire the
NLPQ12 and the SAFE‘S systems.

NLPQ was the first AP system to utilize
natural language dialogue as a specifi
cation method. During an English dia
logue on a simple queuing problem the
system gradually builds a semantic net
as the formal specification of the prob
lem. The system produces questions to
acquire missing information and an-
'swers questions about the state of the
model being buUt. Starting from the
completed semantic net the transfer-,

87

matlon module of the system then pro
duces a GPSS program.
The SAFE system, a module of an AP
system spanning the full program de
velopment, accepts program specifica
tions given in the form of preparsed
English sentences with limited syntax
and vocabulary. To eliminate ambigui
ties and complete the initial specifica
tion, the system leads a dialogue with
the user. The output of the system is a
complete and consistent specification
of the problem written in a high level
language called Gist.
Specification by examples. It is an often
useful and convenient way of demon
strating the desired behaviour of a pro
gram to simply give examples of what
the desired program is to do.'̂ '̂ This
kind of specification might consist of
examples of the input/output be
haviour of the desired program, or it
might consist of traces of how the pro
gram processed the input. This method
is often used for specifying simple In
put/output programs, and it is a com
fortable way for laymen to explain sim
ple algorithms. There are many diffi
culties involved in specification by ex
amples (or traces); for instance, this
kind of specification is rarely complete,
since a few examples will not fully de
scribe the behaviour of the desired
program in all cases. Another problem
is its heuristic nature and strong de
pendence on domain and everyday
knowledge. Experimental systems
which try to catch the mechanisms be
hind this kind of specification tech
nique provide models which are com
pleted by giving examples to the AP
system.
A well-known system utilizing the
specification by examples technique is
the PSI knowledge based AP sys
tem. >2.14 The PSI system was Intended

to be used as a programming assistant
in the field of symbolic programming. A
subsystem of PSI allows specifying
programs by giving examples of in
put/output pairs and program traces.
There is also a natural language dia
logue facility provided by another sub
system. Besides which, the system ,
gives direct access to the formal model,
called program net, which is being
buUt on the base of the natural lan
guage dialogue and the given exam
ples.
Critiquing specifications. An old and
tried technique used In requirements
analysis is generating examples for
extreme cases to test completeness and
to perform some kind of validation. An
experimental system imitating this
trick of system analysts has been built
by Fickas et al.'s This system has a
model about the application domain
with issues which frequently come up
both in general and hi the application
domain about software systems.
Attachmg Importance weights to these
issues, the system evaluates the extent
to which the specification supports the
goals the weighted issues indicate.

IV. FORMAL
LANGUAGES

SPECIFICATION

Creating a formal specification Involves
understanding the problem and its re
quirements and rephrasing the ac
quired information in a formal lan
guage (the specification language).
Writing formal descriptions of applica
tion specific knowledge is not an easy
task. The problem of formalizing
knowledge frequently arises In the area
of AI applications. The field of knowl
edge representation, one of the most
important branches of AI research,
concentrates on this problem.”.4j it

68

alms at developing knowledge repre
sentation techniques which facilitate
describing domain specific knowledge
and allow flexible manipulation of the
'lepresented information. The difficult
nature of formal description is well il
lustrated by the common AP experi
ence that very often the main problem
Is not how to generate code from the
specification but how to specify the
problem In terms of formal constructs.
Formally specifying the problem for an
AP system can often be as laborious as
manual coding, whereas the same
problem could be explained to a hu
man programmer In a few words. A
characteristic feature of the specifica
tion should be. however, that this kind
of representation is orders of magni
tude easier to develop than actually
Implementing the system.

One of the key conclusions of the past
two decades of knowledge representa
tion research is that the efficiency of
Information passing during man-ma
chine Interaction can only approximate
that of human-human communication
if the machine is already equipped with
a great deal of knowledge about the
application domain, is Regarding speci
fications. this means that effective and
convenient specification requires the
use of specification languages well
matching the characteristic features of
the application area. This section sur
veys specification languages according
to an application domain based classi
fication.

Application areas can possibly be cate
gorized by several points of view and
with different levels of detail. For the
purposes of this paper, the basic prin
ciple of categorization has been to sep
arate application domains according to
how differently they "behave" on a su
perficial level when It comes to de

scribing them. That is. categorization is
based on the different characteristic
features of specification languages
suitable for describing the various
problem domains.

A computer system can be viewed as a
model of a "world" or "slice of reality"
about which it contains Information, u
According to this view, software speci
fication is actually a model building
activity. This activity is considerably
different, however. In cases when the
"world" to be modeled is some part of
the real world compared to those cases
when this "world" exists only in a hu
man’s mind. This is our first separat
ing principle for categorizing applica
tion domains.

When some part of the real world Is to
be modelled, it Is a common problem
that nobody can exactly tell how far
the model should e.xtend. which as
pects of the world should be modelled
and which should be left out. Clearing
up ambiguities and defining the sys
tem is a rime consuming process which
proceeds through a series of user In
terviews. This process is subject to er
rors discussed at the requirements
problem in Section II. Specification
languages should facilitate communi
cation between analysts and users by
being readable for users too. They
should also support top-down decom
position and specification of the prob
lem so that they can be used in early
stages of the development process
when understanding of the problem is
rather superficial.

Another important aspect of the real
world is that Its objects "tangibly” ex
ist, that is, they exist uniquely emd
cannot be multiplied. According to a
somewhat simplified view, people map
real world objects and concepts onto
some conceptual units associated with

89

the relevant tnfonnatlon. and think in
terms of these abstractions. In order to
match the human way of thinking,
specification languages should facili
tate this "one-to-one" correspondence.
Another characteristic of the real world
Is that relations between, and opera
tions on. Its objects are relatively sim
ple, partly due to special properties of
real objects discussed above, partly
due to the limits of human mental ca
pacities (most applications automate
some manually performed job).

On the other hand, modelling Is im
peded by the Inherent property of the
real world that practically all rules
have exceptions. Irregularities arising
frequently In reality cause many prob
lems when we try to force some portion
of the world Into a formal and simpli
fied model. These exceptional cases
usually contribute to the complexity of
the model on a large scale.
Specification languages should directly
support handling degenerate and ex
ceptional cases In order to avoid be
coming unmanageable models.
Within the area of real world applica
tions two major subareas can be de
fined according to whether the static or
dynamic aspects of the world dominate
In the model. These are the areas of
information systems and real-time
systems, respectively. Information
systems deed primarily with the struc
tural and organizational Issues of the
world. They store and maintain Infor
mation about relevant real world ob
jects and the state of relations between
them. Information systems are con
cerned with real world events only so
much as they change the state of the
modelled portion of the world. On the
other hand, real-time systems (often
called embedded systems) concentrate
on the communication among the ob

jects of the world. They represent real
world objects in a direct way and so to
say simulate the communication
among objects.

When the world to be modelled is an
imaginary one. the communication
problem is not characteristic. A signifi
cant part of the modeling job need not
be carried out In such cases since the
"world" to be modelled Is often given in
the form of an abstract model. A fur-

V

ther advantage is that models of this
kind are usually fairly "regular", con
straints on objects and relationships
are generally satisfied "by definition".
On the other side. In an artificial world i|
there is practically no limit for the
complexity of the relationships between
and the operations performed on ob
jects. To cope with this indefinite com
plexity the most generic constructs of
mathematics are required, such as
sets, logic assertions, functions, etc.
The general purpose specification lan
guages, some of which are discussed
later in this section, provide such gen
eral constructs as the basis of descrip
tion. Application domains for which
these general purpose specification
languages often prove appropriate In
clude, for example, support systems J
(operating systems, editors, etc.) and
mathematical software. Of course, it Is
possible to divide these large appllca- ."I
tlon areas Into smaller ones for which
more specific specification facilities can
be developed, as, for example, lan
guages for specifying editors actually
exist, discussion of this vast area is far
beyond the scope of this paper.

In the rest of the paper, a brief survey
of specification languages is given.
Some general purpose specification
languages are presented first, followed
by a discussion of specification lan
guages for Information systems and 1

real-time systems. Since the borders of
the categories may not be drawn
sharply, and since some of the lan
guages enumerated are intentionally
developed for use in several domains,
the classiflcation of specification lan
guages below is not unanimous.
General purpose specification lan
guages. As general purpose specifica
tion languages are designed to be suit
able for a very wide range of applica
tion domains, there are no common
properties which all of these languages
share, or should share (except for obvi
ous features like ease of expression,
readability, etc.). However, they can be
classified according to the underlying
mathematical theories, that is, the set
of mathematical instruments, they use
as a basis of expression. In the follow
ing. some of the prominent general
purpose specification languages will be
briefly described and grouped by their
underlying approach for modeling.

Model-oriented languages. One way to
specify software is to describe the
mathematical models of the structures
and operations on those structures one
intends to represent. Languages taking
this model-theoretic approach to mod
elling are called model-oriented lan
guages. Typically, the matematlcal
models of the structures are abstract
data types, and employ the ideas of
sets, functions, relations, sequences,
Cartesian products, etc. Operations are
also specified that are required on the
abstract model. Pre- and postcondi
tions are used to specify procedures,
which may have side effects. A problem
with model-oriented specifications Is
that It is easy to overspecify a system,
tallmlnatlng certain implementations
from consideration from the beginning.

Two prominent representatives of this
category are the Z language‘s.‘9 and the

specification language of the Vienna
Development Method {VDM).“ -̂*
The Z specification language is a for
mal notation for ordinary naive set
theory. It is based on the principle that
programs and data can be described
using set theory just as all of mathe
matics Ccm be bum on a set-theoretic
basis. Data types are modeUed In Z
using set-theoretic constructions just
as natural numbers, ordered pairs and
sequences are defined hi set-theoretic
terms In mathematics.
VDM is a mathematically based set of
techniques for the specification, devel
opment, and proof of correctness of
computer systems. Its objective Is to
retain most of the advantages of formal
program development without the
foundational overhead of formality.
VDM adopts the transformational ap
proach, programs are produced by a
process where the Individual refine
ment steps are shown to be correct
using arguments which are formaliz-
able rather than formal, thus approxi
mating the level of rigour used in
mathematics.

Rewrite rule based languages. During
the past decade a number of very high-
level programming languages which
can be seen as executable specification
languages have been developed. The
underlying idea here is that equations
can be used as rewrite rules. That is,
an equation Vx(t = tj can be viewed as
a rewrite rule t ==> t' (or t' ==> t) say
ing that any substitution Instance of t
In an expression can be replaced by
the corresponding substitution In
stance of t'. Under certain conditions.
It Is possible to "run" a set of such
rules to compute the value of an ex
pression. Well-known examples of
rewrite rule based languages are
HOPE.22 Standard ML» and OBJ2.“

91

Algebraic specification. languages.
Algebraic specification languages, such
as CLEAR,»-*« ASIÂ or Extended ML̂®,
are those modelling programs as
many-sorted algebras. The idea behind
this specification method is that a
functional program can be viewed as a
many-sorted algebra, l.e. a number of
sets of data values together with a
number of total functions defined on
the sets. Elach data type of the program
Is modelled by one corresponding set of
values. The functions defined on these
value sets correspond to functions In
the program. A specification consists of
a signature (a set of data type names
and a set of function names with their
types) together with a set of equatlonal
axioms expressing constraints which
the functions must satisfy.

This approach allows focusing on the
representation of data and the in-
put/output behaviour of functions by
abstracting away from the algorithms
used to compute functions and their
Implemenatlon on a given progrzim-
mlng language. It Is possible to extend
this paradigm to handle imperative
programs, too.“
Specifying Information systems. By
now Information system (IS) applica
tions have grown Into one of the largest
subarea of SE. The great number of
commercial applications bearing simi
lar characteristics and problems have
urged research toward specification
languages which better exploit these
similarities. Tools and techniques for
developing the specification have also
gone through a dynamic progress.
Several generations of programming
and specification languages have suc
ceeded each other in the past decade
obeying the aphorism 'Today’s specifi
cation languages are tomorrow’s pro
gramming languages". The relational

data base theory, which was origlnaDjrl
Intended to be a specification tool, has
become one of the most popular orga
nizational principle of today's DBMSs. i
The next stage of IS modeling is
m2irked by the appearance of Chen’s
Entity-Relationship Models® which of
fers a better data abstraction facility.
Many of the current IS specification
languages are based on this or similar
semamtlc data models.̂ i However, data
Is only one aspect of ISs to be dealt
with. In the following, we briefly survey'
current specification languages which
intend to provide a coherent framewoiij
for describing both the static and be
havioural aspects of the world.

Conceptual modelling languaget̂
Languages traditionally used for IS de
velopment lay the emphasis primarily)
on the data to be stored, and usually
are based on some data modelinjj
technique (e.g., relational). The funda
mental problem with these languageî
is that the primitives they offer (reconbi
of numbers and strings, relations, etc.)
are more appropriate for specifyin|j
how data Is stored and accessed In the
computer than modelling the underly
ing concepts. According to a somewhat
naive view, people perceive and think
about the world In terms of basic con
cepts which correspond to objects of
tlie real world in some way. The knowl
edge associated with a real word object
Is organized around the correspondllj
concept. An IS is actually a conceptual
model which operates on such basic
concepts, describing a portion of real
world Interesting for the user. It usu
ally stores, retrieves manipulates In
formation about the relevant portion of
the real world, and In an Important
sense can be viewed as model of that
world, or more accurately of the user's
conception of the world. The utility of

92

an IS is that the user can answer
questions about the world more
quickly and easily by Inspecting the IS
(l.e., the model of the world) than by
actually performing "measurements" In
the real world.
The so called conceptual modeling lan
guages (CML) recently developed for
eliminating the deficiencies of tradi
tional IS development are rooted in this
model oriented view. Languages fitting
into this line. Uke TAXIS». Gallleô a.
AdaplexM, Dlal“ , diverge in some as
pects, such as syntax, scope, ease of
usage, development stage, etc. but can
be tightly related on the basis of their
‘tharacterlstic features, and the way
they approach the specification of IS

î iequlrements. Describing these lan-

Í ' guages is beyond the scope of this pa
per. we rather discuss a blend of their
features and deficiencies in the fol
lowing.
CMLs claim to allow more natural and
direct modeling of the world than has
been the case traditionally, and con
ceptual models are claimed to capture
the semantics of a situation more ac
curately and conveniently. CMLs
have been used at the requirements,
design or implementation level for ISs.
They have a number of features distin
guishing them from traditional ap
proaches.
• First of all. they allow a natural,
one-to-one correspondence between
the relevant entitles of the world and
the objects in the model. This makes
modelling easier by reducing the Job to
a natural, direct mapping of the ana
lyst's conceptualization of the world.

• Objects of the model can have vari
ous propertles/attributes. In most
CMLs, they are allowed to have multi
ple values. Properties can also be de

fined whose values are computed,
rather than explicitly stored.

• Objects are grouped into classes for
the purpose of capturing common
characteristics. Every object is re
quired to be an instance of at least one
class. This can be viewed as a kind of
typing mechanism, for class descrip
tions impose constraints on attributes
applicable to instances and their val
ues.

• Classes are organized into subclass
hierarchies. A new subclass can be
created by introducing additional detail
to the description of an existing one.
New superclasses can be composed by
abstracting out some common proper
ties of several existing classes. Class
hierarchies are usually combined with
some kind of inheritance mechanism
to eliminate unnecessary duplication of
information in subclass definitions. By
inheritance, subclasses automatically
have the properties defined for their
superclasses.

• Events, which are entitles having
an associated time of occurrence or
initiation/termination, can be de
scribed as ot^ects. Several CMLs pro
vide semantic relations like "must be
preceded by” or "must be followed by"
between event type objects, allowing
thus one to define constraints on event
sequences.
The current CMLs have not yet re
solved all the problems of IS develop
ment. They still lack important fea
tures for conveniently specifying ISs.
While they provide powerful facilities
for data abstraction, they often prove
to be weak at describing the dynamic
aspects of ISs. CMLs usually do not
allow for specifying temporal aspects of
the world in sufllclent detail and on a
convenient level. Another deficiency is

93

that these languages provide practi
cally no means for attaching non
functional requirements to the specifi
cation.
Considering a more practical issue, the
process of building the specification is
poorly supported. To use these specifi
cation languages for problems of real
istic size, more appropriate information
acquisition facilities should be pro
vided. For example, they do not provide
constructs for specifying partial con
ceptual views of the system. This limits
the use of these languages in the early
stages of the development when under
standing of the problem is poor and is
made up of knowledge fragments each
of which captures only certain aspects
of the system.
Requirements modelling languages.
Requirements specification In current
practice is often restricted to functional
aspects, prescribing only the tasks to
be carried out by the future system.
During requirements specification,
system analysts attain a lot of addi
tional information for it is inevitable
that they get acquainted with the envi
ronment in which the ^stem wlU op
erate. It is argued that this knowledge
should be captured in the form of a
model of the users environment cind
the various requirements should be
stated in relation to this model.37

There would be several uses of such a
model. To mention only the most
salient ones, it could significantly imp
rove the user-analyst communication
by providing the most natural context
for users and giving a base for auto
mated aids: furthermore, being In a
form processable by the computer, the
model can be used to simulate the
world offering dynamic checking facili
ties.

Requirements modeling shows similar
ities to semantic data modeling. A sig
nificant difference, however, is that re
quirements modeling captures a
broader context of environment. For
example, a requirement model may
contain concepts which will not be im
plemented in the computerized system
(e.g., people or other computer systems
communicating with the ŝtem).
Another difference is the approadij
taken for handling the dynamic as
pects of the world. A requiremesj
model is not made up of snapshots of
the world in different moments of time,
rather it depicts the objects of the
world as "three-dimensional" snap
shots. Incorporating a time concept,
similar to that of a human, in the
model (temporal properties, relatlonsji
etc.).
Based on this idea, an experimental
language is being developed by
Greenspan et al.̂ s This requirement̂
modeling language, called RML, was
developed to serve as a specification
language for the TAXIŜ ̂programming
language. RML shares the underlying
principles of TAXIS (e.g., uniform
treatment of data and transactions,; or
ganizational hierarchies of objects, etc.)
and the basic model building blocks,
such as objects, classes, and proper
ties.
In a coherent object-oriented frame
work, R.ML Integrates three different
viewpoints of the world being modeled.
Objects can be of three general types,
each for describing one of the three
views: entitles can be used for de
scribing domain objects, activities- for
defining events in the world, and as
sertions for imposing constraints on
the world.
The main advance In RML compared to
TAXIS (and other CMLs) is the built In

94

time concept which allows one to ex
plicitly state constraints on temporal
relationships. The notion of time in
RML is based on an Infinite and dense
sequence of time points. The question

j whether an RML object exists or not Is
‘meaningful only with respect to a
specified time point or time Interval.
The attributes of an object as well as
ittnembershlp in a class is always
evaluated for a given time. Assertions
are also affected by time: they can have
different values (true or false) at differ
ent times.
Due to the powerful constructs and fa
cilities provided for organizing and ab
stracting details, RML allows conve
nient flieclflcatlon, and at the same
time it retains the advantages of for
mality since it has a formal semantics
definition In a logic with tlme.“
Specification of real time systems.
Another large class of computer appli
cations is that of real-time systems.
This field becomes particularly impor
tant today, when the increasing de
mands for Industrial automation re
quire more and more complex software
sj'stems for production and industrial
robot control. Real-time applications
are also gaining ground in other zireas.
such as flight guidance systems, pa
tient monitoring systems, radar track
ing systems. and data acquisition
systems for experimental equipment.
The most common feature characteris
tic to aU real-time applications is pro
cess control, that is the provision of
continual feedback to an unintelligent
environment. This continual communi
cation with an unintelligent environ
ment Imposes strong performance con
straints (e.g.. reliability, real-time re
sponse requirements) on these sys
tems. It seems that this emphasis on
performance requirements Is what re

ally characterizes real-time systems,
and cause to be more aware of their
roles in their environments than we are
for other types of systems.
The high complexity of the interface
between the system and Its environ
ment is typical in this domain. The in
terfaces are usually asynchronous,
parallel, and distributed, which makes
the related requirements difficult to
specify in a way that is both precise
and comprehensible.
Another characteristic of the domain is
that real-time systems can be ex
traordinarily hard to test. It is partly
because of the complex interface, and
partly because embedded systems of
ten cannot be tested in their opera
tional environment. Finally, these
problems exacerbate the maintenance
problem, too. Due to the difficulty of
testing. It is vital that errors be de
tected as early as possible in the devel
opment process.
These characteristics have strong ef
fects on the desirable features of speci
fication languages. Since the interface
is very complex between an embedded
system and its environment, explicit
modeling of the environment is desir
able. Also because of the Interface's
complexity and because of the hard
testability, it is desirable that specifi
cation be operational. The principle
that a specification be free of imple
mentation concerns Is particularly im
portant here. As real-time systems
have sharp timing and space con
straints to be fulfilled, it is very im
portant that hidden implementation
details do not exclude any possible
solution.
Requirements definition methodologies
used in this Held tend to be ad hoc.̂ s
Unfortunately, a common characterls-

95

tic is that less Is done In the eirea of
specification languages tailored to this
field than for ISs. It is likely to be due
to the fact that the field is more di
verging than that of ISs and also be
cause such applications are charac
teristically harder to design and im
plement than to specify.
As implementation constitutes the
major part of real-time system devel
opment. the most important concern in
this field is to develop special purpose,
high level programming languages.
However, it is hard to achieve a gener
ally applicable high level programming
language in this field, since program
ming often inevitably involves assembly
(or even lower level) coding. Due to the
wide gap between specification and
implementation languages in this field,
specification languages tend to be op
erational. Simulation of the future
system operation based on the specifi
cation can be beneficial considering
that testable versions of the system are
usually available only at very late
stages of the development.
One of the most prominent and influ
ential contribution to the development
of real-time systems has been made by
Zave et al.® They developed an opera
tional approach (see Section 11) for
specifying real-time systems which is
based on an executable specification
language, PIASLey, with a transforma
tional development method. The
PAISLey language is an "almost" purely
applicative language, including only
features which are directly associated
with run-time semantics. It has a de
composition facility based on processes
which are the primary units of specifi
cation. In specifying a system with
PAISLey, a system is first decomposed
into processes, then computations
making up processes are decomposed

into steps. Applicative programming-,j
starts after this organizational level de- i
composition has completed, thus ap-l
pllcatlve programs have relatively small
size. The asynchronous communlca- ’
tlon between processes constltuttn^l
the system Eire modelled by three ■
primitive functions coherently inte
grated into the applicative framework.
Elxecutablllty is achieved by an inter- ̂
active interpreter which asks for,
missing information from the user to,
Interpret incomplete specifications.;
This kind of executability approach al
lows executing specifications regard-̂
less how incomplete and high level {
they are. Actually the specification un
der interpretation acts as a simulation j
of the system's behaviour.

A similar approach is taken byj
Goedicke in a formsil specification lan
guage. called EDE.«>

V . C O N C L U S I O N

In trying to cope with the ever grow
size and complexity of applications,']
attention is being turned towards for-j
mal and automation-based softwa
development paradigms (as illustrated]
in Section II). By now it is clear that]
real alleviation of the software; crisis]
can only be expected from shifting the]
man-machine participation rate in the]
software process towards the mach
part, that is, for more and more au-'
tomation of the development proce
Independently of the degree of au-|
tomation, however, AP systems will al-j
ways require some input: the complete]
and unambiguous description of the]
problem in question and its requli
ments. As design and ImplementatloiJ
are getting easier due to computer
assistance and high level implementál
tlon languages, the specification of re-T

96

'flulrements performed with human
p̂articipation tends to become the bot
tleneck of the software development
process.

Current research into specification re
lated problems is constituted of several
research directions each being con
cerned only with certain aspects of the
overall problem. This paper has tried to
give a survey of these experimental re
search areas.

Some research attacks the specifica
tion problem along with other prob
lems of the software process, from a
classical SE point of view: seeks better
methodologies for engineering soft
ware. The suggested alternative ways
for developing software have been
overvlewed hi Section II.

Methodologies for developing the spec
ification have been discussed in
Section III. Research in this field stud
ies the procedure of building the speci
fication and the tools and techniques
usefully applicable in that activity.
A fundamental question considering
specifications is the form of represen
tation. The tendency here is the in
creasing formality to meet automation
demands. Formality, on one hand, has
ever had its own advantages and dls-
aclvantages. What makes formality
worth advocating nowadays is the In-
I creasing demands for automation and
the real chance of accomplishing it. A
survey of formal specification lan
guages has been given in Section fV.
The development of current specifica
tion methods and languages has been
influenced by ideas mainly from three
areas. SE, AI, and mathematics.

For example, general purpose formal
specification languages Incorporating
ideas from mathematics and program

ming languages allow precise syntax
and semantics definitions, and thus
lend themselves to computer process
ing. Programming language and gen
eral mathematical constructs (e.g.,
sets, sequences, relations) have
enriched specification languages with
general means of formulating
Information rigourously but still
conveniently.
The development of Conceptual
Modelling Languages has been
primarily Influenced by Ideas from AI
Knowledge Representation. The object-
centered framework these languages
Incorporate allows convenient
modelhng of the relevant concepts,
and, by using general-
Izatlon/speclaUzatlon hierarchies of
objects, requirements specification can
be performed in a top-down fashion.
This top-down decomposition facility
allows omitting details at the beglrmlng
and thus permits early use of the
specification limguage. In this way
these AI ideas also yield some method
ology for creating the specification.

A characteristic problem with formal
specification languages is that they do
not always take into account to a sat
isfactory extent that understanding of
the problem grows only gradually
during requirements understanding
and specification, which altogether
make these languages hard to use. On
the other hand, experiences have
shown that the development of more
powerful and convenient specification
languages. In itself, cannot be a solu
tion to the specification problem. Their
usage should also be supported by
aids similar to those applied in current
practice.
Practical specification methods lying
within the scope of SE use such mix
tures of formal and informal elements

97

In the specification that an optimal
trade off between natural language
ambiguity problems and formalization
difficulties can be achieved. These
methods usually facilitate top-down
specification, viewing the system from
multiple viewpoints, and other com
mon analysis techniques which should
be Incorporated into any specification
method.

A C K N O W L E D G E M E N T S

We are Indebted to I. Fekete, T.
Ásványi, T. Gregorlcs, S. Nagy, S. S&e
and T. Vencel for their help in prepar
ing this paper.

R E F E R E N C E S

(ll C. V. Ramamoorthy, A. Prakash, Wei-Tek
Tsai and Y. Usuda. "Software Engineering:
Problems and Perspectives", IEEE
Computer, Oct. 1984, pp. 191-209.

[21 R. Balzer, T.E. Cheatham and C. Green,
"Software Technology in the 1990's; Using a
new Paradigm", IEEE Computer, Nov. 1983,
pp. 29-45.

[3] R Balzer, "A 15 Year Perspective on
Automatic Programming", IEEE Trans.
Sojiw. Eng., vol. SE-11, no. 11, Nov. 1985.
pp. 1257-1268.

[4] S. Westfold, "Very-high-level programming
of knowledge representation schemes",
AAAl'84, Untv. of Texas, Austin 1984, pp.
344-349.

[5] E. Horowitz, A- Kemper and B.
Narasimhan, "A Survey of Application
Generators", IEEE Sojtware, Jan. 1985, pp.
40-54.

{6] P. Zave, "An Operational Approach to
Itoquirements Specification for Embedded
Systems”, IEEE Trans. Softw. Eng., vol. SE-
8, no. 3, May 1982, pp. 250-269.

17) P. Zave, "The Operational versus the
Conventional Approach to Software
Development", Commun. ACM. vol. 27, no.
2. Feb. 1984, pp. 104-118.

181 P. Zave and W. Schell, "Salient Features of
an Executable Specification Language and

Us Environment", IEEE Trans. Sojtw. Eng.,
vol. SE-12, no. 2, Feb. 1986, pp. 312-325.

(91 Luqi and V. Berzins, "Rapidly Prototyping
Real-Time Systems", IEEE Softw., SepL
1988, pp. 25-36.

[lOj Luqi and M. Ketabchl, "A Computer-Aided
Prototyping System". IEEE Softw., March
1988, pp. 66-72.

(11] B.W. Boehm, "Software En^neering", /FEE
CofTv̂ uter, vol. C-25, no. 12, 1976.

(12] A Barr and E.A Feigenbaum (Eds.), The
Handbook of Artificial Intelligence, VoL II,
Chap. X, Automatic Programming, Willlam
Kaufmann Inc., Los Altos, CA, 1982.

(13] Z. Manna and R. Waldinger, Synthesis:
Dreams ==> Programs, Rep. no. STAN-CS-
77-630, Comp. Sci. Dept., Stanford
University, 1977.

U4] D.R. Smith. G.B. Kotik and S.J. Westfold.
"Research on ECnowledge-Based Software
Environments at Kestrel Institute", IEEE
Trans. Softw. Eng., vol. SE-ll, no. 11,
1985.

(15] S. Fickas and P. Nagarajan. "Critiquirig
Software Specifications", IEEE Softwcwe,
Nov. 1988, pp. 37-47.

(16] D.R. Barstow, "Domain-Specific Automatic
Programming", IEEE Trans. Softw. Eng., vol.
SE-11, no. 11. 1985.

117) J.R Abrial, "Data Semantics", in J.W.
Klimbie and K.L. Koffeman (Eds.), Data
Maru^ement Systems, North-Holland,
Amsterdam, 1974.

(18j J.R Abiial, S.A Schuman and B. Meyer,
Specification Language Z. Massachusetts
Computer Associates Inc., Boston 1979.

(19] D. Ince, "Z and System Specification", Inf.
and Softw. Tech., vol. 30, no. 3, April 1988,
pp. 138-145.

(20] D. Bjomer and C.B. Jones, Formai
Specfication and Software Development,
Prentice-Hall 1982.

(21] A. Andrews, "Specification aspects of VDM",
Irif. and Softw. Tech., vol. 30, no. 3, April
1988, pp. 164-176.

(22] RM. Burstall, D.B. MacQueen and D.T.
Sannella, "HOPE: an Experimental
Applicative Language", in Proc. 1980 USP
Conference, Stanford 1980, pp. 136-143.

123] R Harper, R Milner and M. Tofte, The
Definition of Standard ML, Rep. no. ECS-
LFCS-88-62. Univ. of Edinburgh. 1988.

[24] K. Futatsugl, J.A. Goguen, et al. "Principles
of OBJ2", in Proc. 12th ACM Symp. on.
Principles of Programming Languages, New
Orleans 1985, pp. 52-66.

90

(25) RM. Biirstall and J.A. Goguen, "Putting
Theories together to Make Specifications" in
Proc. 5th IniL Joint Conf. on Artificicd
IntelUgence i\977), pp. 1045-1058.

126) D.T. S€inneUa, "A Sct-Thcoric Semantics for
CLEAR", Acta Inf. 21. 1984, pp. 443-472.

Í27] M. Wirslng, "Structured Algebraic
Specifications: a Kernel Language",
Theoretical Computer Science 42, 1986, pp.
124-249.

(281 D.T. SanncUa, and A. Tarlecki, "Program
Specification and development in Standard
ML" in Proc. 12th ACM Symp. on Principles
of Programming Languages, New Orleans
1985. pp. 67-77.

i' [29] H. Ehrig and B. Mahr, Flindomentois of
Algebraic Specifcatior\s 1, EATCS
Monographs on Computer Science.
Springer 1985.

[30| P.P. Chen (Ed.), Entity-Rclarionsh^
Approach to Systems Arualysis and Desigrx,
North-Holland, Amsterdam I960.

[31] M.L. Brodie, "On the Development of Data
Models" in M.L. Brodie. J. Mylopoulos and
J.W. Schmidt (Eds.) On Conceptual
Modelling, Springier-Verlag 1984. pp. 19-
47.

[32] J. Mylopoulos, P.A. Bernstein and H.K.T.
Wong, "A Language Facility for Designing
Interactive Database-Intensive Systems”,
ACM Trans. Database Systems, vol. 5. no.
2. June 1980. pp. 185-207.

[33] A. Albano and R. Orsini, "A Software
Engineering Approach to Database Design:
the Galileo Project" in A. Albano, V. de
Antonellis and A. di Leva (Eds.), Computer-

, Aided Database Desigrv The DATAID
Project. North-Holland, Amsterdam 1985,
pp. 53-76.

[34] D.W. Shipman, The Functional Data
Model and the Data Language DAPLEX",
ACM Trans. Database Systems, vol. 6. no.
1, March 1981. pp. 140-173.

[35] M. Hammer and B. Berkowitz, "Dial: a
Programming Language for Data-Intenslve
Applications" in Proc. ACM SICMOD Corf.,
May 1980, pp. 75-92.

[36] A. Borgida. "Features of Languages for the
Development of Information Systems at the
Conceptual Level”, ÍEEE Software. Jan.
1985, pp. 63-72.

[37] A Borgida. S. Greenspan and J.
Mylopoulos, 'ICnowledge Representation as
the Basis for Requirements Specifications",
IEEE Computer, April 1985, pp. 82-91.

[38] S. Greenspan, A Borgida and J.
Mylopoulos, "A Requirements Modeling

Language and Its Logic" in M.L. Brodie and
J. Mylopoulos (Eds.) On Knowledge Base
Management Systems, Springler-Veriag
1986. pp. 471-502.

(391 R.L. Glass, Real-Time Software, Prcntlcc-
Hall 1983.

1401 M. Goedlcke. "Development of Etealtime
Systems: Specifying Functional and Ê arallel
Behaviour Formally" Proc. 14th IFAC/IFÍP
Workshop on Real-Time Programming, Lake
Balaton. Hungary 1986, pp. 67-79.

141) B. Meyer, "On Formalism in Specifications",
IEEE Software, Jan. 1985, pp. 6-26.

[42| J. Mylopoulos and H.J. Levesque, "An
Overview of Knowledge Representation" in
M.L. Brodie, J. Mylopoulos and J.W.
Schmidt (Eds.) On Conceptual Modelling,
Springler-Veriag 1984. pp. 3-17.

99

r

V .

•'ííl

'm

U Íl-‘,

'v '
Y <• ' -'/y

i

A Priori Information Support in the Classification

of Satellite Images

Csornai, 6., Nádor, G., dr. Dalia, o.

FÖHI Remote Sensing Centre

1149. Budapest, Bosnyák tér 5.

The agriculture plays key role in the Hungarian economy. Thirty

percent of the total land is covered by different crops. That

is why reliable, timely information on the major crops is of

vital importance. The correct area estimation of the different

crops, their stage and development assessment plus the reliable

yield forecast are some of the main tasks of a national crop

information system (CIS). This system should work real time and

efficiently in terms of cost-benefit. The state of the art

remote sensing - that is application of satellite images-

provides a possible adequate tool to serve as a basis of the

Hungarian CIS.

The satellites provide multispectral digital images of the

Earth surface in a regular coverage pattern and with 5-16 days

revisit interval. The multispectral image records the

electromagnetic energy. This energy is quantized in different

wavelength bands. That is the digital image is a matrix with

vector elements (pixels). The surface element corresponding to

one position in the image matrix is that is reflected by the

objects (vegetation, soil, water bodies, etc.) on the Earth's

surface 0.1-0.4 hectare. An image covers a 5000-36000 km' area

on the ground. The spatial and temporal seunpling capability of

these images is superior to any of the existing field data

collection methods.

The basic problem of those tasks outlined above is to derive a

correct crop map plus area estimation figures using satellite

101

data. This can be done using image classification methods which

comprise image processing and applied pattern recognition

methods.

1. Experiences with per point and context dependent image

classification methods

Pattern recognition techniques proved to be useful in analyzing

multispectral satellite images. Different clustering (ISODATA

type and histogram based) [Farkasfalvy, 1986] and

classification (maximum likelihood and Bayesian) [Csornai et

al, 1983a] methods has been applied. In the beginning the

context independent techniques were used. These cluster or

classify a pixel independent from its neighbours. On the

Hungarian Great Plain we got fairly good results when

developing and improved versions of these [Csornai et al,

1983a, 1983b]. The classification accuracies varied from 75-98Í

depending on the class. (The classes generally comprise more

subclasses of wheat, corn, sugar-beet, sunflower, bare soil,

etc.). Rigorous error estimation projects w'ere done [Csornai et

al, 1984] to analyze the impact of noise (field anomalies) and

the tendency in misclassification. These accuracies were

achieved on smaller (some farms) and bigger (1000-2000 W)

areas, too. Lately we got a good crop map and area estimation

figures 2-5% close to those of the Hungarian Statistical Office

for a whole 0.6 million hectare county, Hajdú-Bihar [Csornai et

al, 1987].

The context dependent methods make use of the strong

correlation of vectors in the neighbouring pixels. Some methods

build new features of the computed measures of the textural

correlations [Haralick et al, 1973] and use them together with

the spectral variables [Swain, 1976]. Others try to segment the

image first, delineating homogenous blocks using some criteria

[Robertson et al, 1973]. The ECHO, . extraction and

102

classification homogeneous objects and its supervised (SECHO)

version [Kettig, Landgrebe, 1976] are based on the facts, that

objects (agricultural fields, ponds, etc.) are several times

larger than the pixel size plus these pixels have similar

intensity values. The original algorithm was improved [Fekete,

Farkasfalvy, 1989] and installed onto a Microvax compatible

processor.

Each of the context dependent algorithms has a basic assumption

(Bodel) on the relationship of the neighbouring pixels. The

iodels generally are not specific to directions or particular

locations, coordinates on the ground/image, therefore can work

loderately well with different images. From these two important

groups of context dependent analysis and classification

algorithms the first (textural classification) has a weaker,

less specific assumption than the second (homogeneous segments

oriented).

further increase in correct classification can be achieved if

lore a priori information is introduced into the classification

scheme. There are many possible ways for that. A common example

is when we use a priori class probabilities in the maximum

likelihood decision. In case of Bayesian decision the a priori

knowledge does not refer either to the relative frequency or

the distribution of the classes, but to the loss arising from

the misclassifications. In both cases these a priori data

influence the result of the classification. The next reasonable

step is to make use of the location and shape a priori

information of the investigated objects.

2, The use of the field boundaries in image classification

Kithin the Hungarian circumstances the annual change rate of

the agricultural fields boundary is estimated to be within the

2-51 interval. Thus if once the coordinates of these boundaries

103

are in a comprehensive data base (DFBD - digital field

boundaries data), the image classification can be enhanced in

several ways. Two of these have been studied at the FÖMI Remote

Sensing Centre in details.

Prior to the image classification the DFBD is compared with the

actual image to reveal the possible boundary changes. This is

done in three steps. First the geometrical match between the

DFBD and the image is accomplished using resampling techniques

of the image [Dalia, 1983] or the polygon system of the field

boundaries is mapped into the image geometrically. Some

derivation operator (e.g. Roberts, Soebel, Kirsch) is then

applied to extract the locations of the bigger intensity

changes - the boundaries - from the image [Nádor, 1987] next.

In the last step the DFBD and the derivation image is compared

to locate the changes. (This is done now, visually though in a

computer aided manner.) The DFBD is then updated. An example

for DFBD can be seen in Fig.l.

The first method, say method A, starts with the per-point

classification (e.g. maximum • likelihood) and digitally

superimposes the DFBD to the classified image. The procedure

investigates the classified image within every field and based

on the class relative frequencies the particular field is

assigned to that of the biggest frequency (the most probable

class). There are certainly some heterogeneity checks for the

field included in addition. Method A reclassifies the fairly

homogeneous fields while the rest are left with the per-point

classification result.

Method B [Farkasfalvy, 1987] uses the DFBD at the very

beginning of the procedure to compute second order statistics

from the homogeneous fields. These fields are then classified

using clustering and maximum likelihood method. Here the unit

is the field instead of the pixel.

1 n a

Figure 1: Digitized field boundaries of a cooperative,

Hajdúböszörmény

These methods have performed quite well and increased the

average percent correct classification by about 10, compared to

the per-point method.

105

3. Further research on a priori information support

As one of the major problems of this supervised learning in

image classification is the representative selection of

training and test set, the a priori data are also used in this

step. There are some important environmental, biological,

climatological and other parameters that vary throughout the

study area. Homogeneous assembly of these, the areal sampling

stratum should be delineated on the image. We make efforts to

establish a sound methodological basis to solve this

multiparameter stratification problem adequately. For some two

or three connected counties on the Plain we try to verify our

model of stratification using digital soils map, topography

maps, distribution of crops in the farms, average

meteorological maps as the most important ones. The particular

type of processing systems capable to the integrated analysis

of different types of spatial distribution of parameters is

called geographic information system (GIS). There are many

types of the GISs, but multidimensional modelling [Csornai et

al, 1987; Csornai, 1988] - similar to the stratification

problem above - can only be solved by raster based systems,

similar to image processing ones.

The previously sketched stratification method helps in the

classification procedure, but there are further direct ways in

using the a priori information in the classification. An

example for this is based to a classification (per-point or

other) plus a sequence of the check of rules derived from the

agricultural practice and restrictions within a particular farm

(e.g. the rule for corn sunflower prohibited transition).

In the framework of a national crop information system that is

organized in a GIS way the image classification procedure from

year to year or within a season can rely on the series of

results of the previous image classifications plus other (e.g.

ground collected) ancillary data. If the classification model

106

(CM) is comprehensive enough, it can conceptually be supposed

that the image classification errors tend to decrease in time

that is reliable CIS could evolve.

The reliability holds until the background CM's assumptions are

still valid. When there are changes in the components of the

rules that control the CM, at least a warning is expected from

the CIS.

Through the CIS system with strong modelling capabilities is

planned to work by mid 1990, some valuable options are at our

disposal already [Nádor, 1988]. The adequate computer aided

stratification method is hoped to be accomplished soon, but the

introduction of some agricultural practice derived rules into

the classification still needs a lot of work.

4 . Summary

The per-pixel classification methods can effectively be used

for satellite images to create crop maps in Hungary. However

there are many ways of improving classification accuracy using

a priori information. A specific Hungarian possibility to use

digital fields boundary data base in the image classification.

Both methods that used DFBD increased accuracy by 10 percent.

There are further possibilities to make use of a priori

information with the use of GIS. Either the computer aided

stratification or a learning CIS are good examples for the

potential of strong reliance onto the a priori information.

Acknowledgement

The results reported in this paper were achieved in a R+D

project having been supported by the State Board for Technical

Development, the Ministry of Agriculture and Food and the

Intercosmos Council of HAS.

I

107

References:

Robertson, T.V., Fu, K.S., Swain, P.H.: Multispectral image

partitioning, Ph. D. Thesis #25970, School of Electrical

Engineering, Purdue University, West Lafayette, IN, August,

1973.

Kettig, R.L., Landgrebe, D.A.: Classification of multispectral

image data by extraction and classification of homogeneous

objects, IEEE Trans. Geoscience Electronics, Vol. GE-14, No.l,

January, 1976.

Haralick, R.M., Shanmug2un, K., Dinstein, I.: Textural features

for image classification, IEEE Trans. Systems, Man and

Cybernetics, Vol. SMC-3, November, 1973.

Swain, P.H.: Land use classification and mapping by machine-

assisted analysis of Landsat multispectral scanner data, LARS

Information Note 111276, Purdue University, West Lafayette,

Indiana, September, 1976.

Csornai, G., Dalia, O., Gothár, Á., Vámosi, J.: Classification

Method and Automated Result Testing Techniques for

Differentiating Crop Types, Proc. Machine Processing of

Remotely Sensed Data, West Lafayette, USA, 1983a

Csornai, G., Vámosi, J., Dalia, o., Gothár, Á.; Vegetation

Status Assessment and Monitoring in Agricultural Areas by

Remote Sensing, XXXIVth lAF Congress, Budapest, 1983b

Csornai, G., Dalia, 0., Gothár, Á.: Application results of

efficient classification methods for multispectral images (in

Hungarian), V. "Földfotó" Seminar, Budapest, 1984.

108

Csornai, 6., dr. Dalia, O., Farkasfalvy, J., Nádor, 6.,

dr. vámosi, J., Zabó, P.: Development of assessment methods for

the major crops on large area (in Hungarian), Research Report,

FÖMI, Budapest, 1987.

Csornai, 6., dr. Dalia, o., Parkasfalvy, J., Nádor, G.,

dr. Vámosi, J., Zabó, P.: Development of assessment methods for

the major crops on large area (in Hungarian), Research Report,

FÖMI, Budapest, 1988.

Csornai, G.: Satellite data based geographic information system

for agricultural applications (in Hungarian), Geodézia és

Kartográfia, Vol.40, No.4, 1988.

Dalia, 0.: Geometrical transformation of digital images (in

Hungarian), Geodézia és Kartográfia 1983/1.

Nádor, G.: Interband per-point transformations in spatial data

analysis (in Hungarian), in: Csornai et al, 1988.

Nádor, G.i Program for edge detection (User's guide, in

Hungarian), FÖMI, Budapest, 1987.

Farkasfalvy, J.: Clustering methods for remotely sensed data,

2nd Conference of Program Designers, ELTE, Budapest, 1986.

Farkasfalvy, J.: Comparison of the per-point and per-field

classification methods in the processing of remotely sensed

data, 3rd Conference of Program Designers, ELTE, Budapest,

1987.

Fekete, I., Farkasfalvy, J.: Automatic segmentation of

multispectral digital images. Conference of Artifical

Intelligence, ELTE, Visegrád, Jan.1989.
I

309

...rv..

J ;
' '̂ •1

-..lm

a 3 ti

41

COMPARISON OF DIFFERENT CLASSIFICATION METHODS

USING LANDSAT TM DATA

J. Farlcasfalvy

FÖMI Remote Sensing centre

1149. Budapest, Bosnyák tér 5.

Different methods, which we have developed for classification,

are compared on a common subimage of a Landsat TM scene. The

result of this case study for a given image in a given date

does not qualify the methods sufficiently. It is necessary to

examine them for different cases (area, date), and dependence

on the data and parameters has to be recognized. These

experiments have been started [5].

Image to be used was: Landsat TM, date: July 8, 1987. Four TM

bands were used in the process. The selected area is on

Hungarian Great Plane, the image matrix^ consists of 512 by 512

pixel. The vegetation on this area had been known, so we could

complete the digital reference map that was used in the

classification procedure.

Two traditional per-point procedures were used with different

clustering methods: ISODATA [2, 3], and histogram-clustering

[3]. There are two methods based on field boundaries, we call

them method A and method B for the sake of simplicity.

The method A [1, 6] investigates the result of per-point

classification: computes the class relative frequencies for

every field. If a field consists of mostly one class’ pixels,

all the pixels will be ranged to this class. This method is a

smoothing of the classified image.

^A pixel is a vector, containing reflected radiances in
different electromagnetic wavelength regions, from a given area
of the Earth's surface.

111

The method B [4, 5] uses the field boundaries at the very

beginning of the classification. First the second order

statistics of fields are computed, then the fields having not

too large variance are clustered and classified by per-field

methods, using their stat. data. The pixels not belonging to

any homogeneous fields are processed by per-point methods.

The aim of developing of the methods based on reference data is

increasing the classification accuracy, by filtering some local

errors of few pixels (in-field inhomogeneities).

1. Components of the 1st per-point classification plus method A

Clustering by ZSODATA method: Clustering was done for a

subsample. The reason was that some categories could not be

separated after clustering the whole image, because of the

unsuitable area ratio of the categories. Number of clusters

was 30 at the beginning, and 25 at the end of the process.

Combination of class statistics: The clustermap was compared

with the reference map to determine the cluster components

of the categories. The classes' statistics were computed by

mixing the clusters' density functions.

- Maximum-likelihood classification: Classification was made

by maximum-likelihood method, the number of classes was 13.

Computation of classification accuracy: The classification

results was compared to the reference map, and we got the

classification accuracy (contingency) matrix.

- Reclassification by method A: The result of the per-point

classification was smoothed. The parameters were the

following: if the relative frequency of a class was greater

than 60% in a field, and there were not any class having

112

relative frequency greater than 20%, all the pixels of this

field would be ranged to the dominant class. There were 53

homogeneous fields after method A. The classification

accuracy increased (see Table 2.).

input image

per-point clustering reference image

I
V

~1
V

clusters' stat. cluster-map

V
I r~
V V

combination of class stat-s

classes' stat.

V V

per-point classification

classified map

V V

reclassification by method A

smoothed classified map

Components of per-point classification + method A

113

2. Components of the 2nd per-point classification plus method A

- Histogram-clustering: Only 3 bands could be processed in

histogram clustering. The best combination of bands was

chosen. Clustering was done by partitioning this 3-

dimensional histogram. Number of clusters was 34.

The further components of this procedure were the same as in

the other per-point method. The number of clusters was 13.

There were 68 homogeneous fields after method A. The

classification accuracy can be seen in Table 2.

3. Components of per-field classification method (method B)

- Computation of 2nd order statistics of fields: 2nd order

statistics of fields were computed using field boundaries.

- Determination of homogeneous fields of the image: The

homogeneous fields were those having small variances. There

were 77 homogeneous fields out of 117.

Per-field clustering by ISODATA method: We got 13 clusters

after per-field clustering of 77 homogeneous fields. The

pixels of inhomogeneous fields were clustered point by

point.

Combination of class statistics: The clustermap was compared

with the reference map to determine the class (sub-category)

corresponding to the clusters.

- Per-field classification: Classification was made by

maximum-likelihood method, the number of clusters was 13.

114

per-field classification

classified map

Components of method B

115

- Computation of classification accuracy: The classification

results was compared to the reference map, and we got the:

classification accuracy (contingency) matrix.

4. Comparison of oer-ooint and oer-field classification methods

The number of subclasses was different for a user category in

different classification methods. The reason was that the

intensity space was partitioned in different ways by the

clustering methods. The ISODATA per-point clustering method

locates a prespecified number of clusters (the number of

clusters is derived from the number of categories on the

image). The histogram-clustering seeks the local maxima of the

multidimensional histogram. These methods try to decompose the

distribution of all the pixels of the image (mixture of

Gaussian distributions) into simple components of Gaussian

distribution. Then the classes (subclasses) are defined as a

simpler mixture of this components. On the other hand the per-

field clustering decomposes the distribution of all the pixels

into simpler Gaussian mixture, and these distributions

correspond more adequately to the (sub)classes.

4.1. Evaluation of the different classification methods per

categories

The two different methods filter different inhomogeneities:

inhomogeneities of small spots disappear using method A, while

those part of a field that have similar intensity values are

merged with method B. Therefore the homogeneous fields are not

the same in these classification methods, as can be seen in

Table 1. The reason for the lower ratio of homogeneous fields

in column l.A for wheat category is that the pixels of the

field classified correctly in 80-90% are in different wheat

subclasses.

1 I B

Categories # pixels # fields No. of homog. fields

l.A 2.A B

Wheat 41150 38 11 30 36

Com 37442 40 19 18 25

Sugar-beet 12485 13 9 5 3

Potato 4186 7 5 6 2

Alfalfa 3687 6 5 4 5

Soil 2026 4 3 2 2

Water 3568 2 2 2 0

Table 1: Number of homogeneous (classified with accuracy of

100%) fields in the different classification methods

Classification accuracy

■ Categories 1/point
class

Method
1/A

2/point
class

Method
2/A

Method
B

S Wheat 87 % 91 % 78 % 89 % 98 %

\ Corn 73 % 78 % 79 % 82 % 90 %

j Sugar-beet 65 % 83 % 61 % 67 % 81 %

J Potato 67 % 83 % 76 % 87 % 77 %

J Alfalfa 65 % 85 % 77 % 81 % 96 %

1 Soil 87 % 91 % 83 % 88 % 45 %

J Water 71 % 100 % 71 % 100 % 76 %

9 Average
1 accuracy
1 in percent

80 1 86 .8 78 9 85 6 91 6

Table 2: The classification accuracies of the different
methods

117

*

It is obvious from the table that the accuracy for method A

exceed the accuracy of simple per-point methods, for some

categories significantly. The average accuracy is the best for

method B, and it is low only for soil category because of the

inexact reference data.

The total processing time was the shortest in method B, and it

would have been even much shorter, if more pixels had belonged

to the homogeneous fields, because the great part of the pixels

of image was processed per point in this case too.

5. Summary

Different image classification methods were compared. Their

major steps were summarized. The methods that used digital

field boundaries increased the classification accuracy. In this

case study the method B seemed to be the most efficient and

accurate.

Acknowledgement

The results reported in this paper were achieved in a R+D

project having been supported by the State Board for Technical,

Development, the Ministry of Agriculture and Food and the'

Intercosmos Council of Hungarian Academy of Sciences.

118

Keferences!

[1] G. Csornai, dr. O. Dalia, J. Farkasfalvy, G. Nádor,

dr.t/. Vámosi, P. Zabó: Development of assessment methods

for the major crops on large area (in Hungarian), Research

Report, FÖMI, Budapest, 1987.

[2] O. Dalia: Evaluation of classification methods for

remotely sensed multispectral images (in Hungarian),

Doctorial dissertation. Technical University, Budapest,

1986.

[3] J. Farkasfalvy: Clustering methods for remotely sensed

data. 2nd Conference of Program Designers, ELTE, Budapest,

1986.

[4] J. Farkasfalvy: Comparison of the per-point and per-field

classification methods in the processing of remotely

sensed data. 3rd Conference of Program Designers, ELTE,

Budapest, 1987.

[5] J. Farkasfalvy: Some problems of parameter selection in a

complex procedure of per-field classification. 4th

Conference of Program Designers, ELTE, Budapest, 1988.

[6] G. Nádor: Utilization of ancillary data in the

classification of agricultural fields (method A) (in

Hungarian), FÖMI, Budapest, 1987.

119

. .i-:
I .

r'-'X
■? t" !f í'* ̂

y ./'

% 7;

-ü^-i ''.sfl

/ s • *

. »>« Ím “ "
:.v--

4 1

. . . ■

•3^1£j
"iiKiS

• 'S>su
■ m

■’ X\¥
..V

'■ '; ; í;^ j

■’f ' f e : '
■ ■- :̂1

AUTOMATIC SEGMENTATION OF MULTISPECTRAL DIGITAL IMAGES

I. Fekete^, J. Farkasfalvy^

1 ELTE Dept, of Computer Sciences

2 FÖMI Remote Sensing Centre

IHTRODUCTION

The remotely sensed multispectral images deliver information

from a given area of the Earth's surface. The data can be

considered as an image matrix, containing vector elements. The

neighbouring elements of the matrix correspond to neighbouring

spots on the surface, so the close picture elements (pixels)

are similar. This similarity is utilized, when segments are

created from neighbouring pixels, and these are processed in

the classification algorithms as a unit instead of the pixels.

The processing of the arrays of statistically similar pixels

provides better classification, because some local errors of

few pixels are filtered. The number of segments is much less

than the number of pixels, so the processing time is reduced,

too.

THE ALGORITHM FOR SEGMENTATION

The algorithm can be divided into two levels.

First the image is partitioned into rectangles of k*l pixels.

These rectangles are called cells, and they are the units of

the segmentation. The cells are small, for example k=l=2. The

cells are tested if they satisfy the criterion of homogeneity

or not.

In the next level the neighbouring cells are merged, if they

are homogeneous and statistically similar by some appropriate

criterion. The group of the connected cells is called a

segment.

121

H o m o g e n e i t y t e s t f o r t h e c e l l s

A cell is homogeneous, if the ratio of the square root of the

sample variance to the sample mean is lower than some threshold

in any channel.

Let

C j =
1 n

------------ Z X
n-1 i=l n-1

Xt j=l,...,r

where Xj is the mean value of the pixels of a cell in the jth

channel, j ̂ ̂ is the intensity value of a pixel in this

channel.

A cell is homogeneous, if Cj < Cjj, in every channel j=l,

where Cjj is the prespecified threshold value.

■ , r ,

Annexation of a homogeneous cell to a neighbouring segment

The goal is merging the statistically similar cells into

segments. The procedure starts from the upper left corner of

the image, goes forward rowwise, and takes only homogeneous

cells into consideration. The annexation criteria is a

statistical hypothesis testing.

Let X = (X]^,...,Xn) represent the pixels in a group of cells

have been merged by successive annexation. Let Y =

represent the pixels in a homogeneous cell. X and Y is assumed]'

to have multivariate normal.density function. The cell Y and

group of cells will be merged, if the corresponding density

functions are the same, or are close to each other.

The following quantities are computed for every channel:

Li = (A/B)N/2

122

(Ax/n)n-l*(AY/m)"'-l ^
L2 = { -----------------:;r---------

(A / N) N

where N = n+m-2,

furthermore

X =
1 n

--- S
n i=l

n n
Ajj = E (x̂ -x)̂ = 2 x^ - n*x" Ay = 2 (Yi-y)̂ = 2 - m*y"

i=l i=l

A “ Â"í" Ay

1 m
y = ---- 2 Yi

m i=l

m m
Ay = 2 (yi-y)= = 2 Yl

i=l i=l

M= (nx+my)/(n+m)

n n
Bx = 2 (Xi-M)“ = 2 x̂ ̂ - n*M= = Ax + n(x-M)'

i=l i=l

m m
By = 2 (y í-M) ̂ = 2 y^ - = Ay + m(y-M)'

i=l i=l

B = By+By

The Y cell will be connected to the group of cells X, if

ĵ,l - *̂ 1 ^j,2 - '̂ 2’ channels j=l,...,r, where c^

and C2 are threshold values.

Evaluation of L]̂ and L2 is independent. tests the hypothesis

of equal mean vectors (first order statistics), and L2 tests

the hypothesis of equal covariance matrices (second order

statistics) . When Y and X are merged, the mixture of their

density functions is computed to be the new density function of

the merged samples of the group of cells X.

123

Z}-
Figure 1/a.

NE

I
Y E

Figure 1/c.

□ □ NEE

I I [ZHZHE
Figure 1/d.

Figure 1/e.

The procedure tries to merge the cell to its west or north-

adjacent cell (Figure 1/a, 1/b) . These cells, if they are

homogeneous, have already been assigned to a partition because

of the processing sequence. If the cell can be merged both of

north and west neighbouring partition, and they are not the

same, the algorithm choose one of them on the basis of a

distance function. The cell is merged to that partition, mean

vector of which is closer to the cell's mean vector in

Euclidean distance.

If the cell cannot be connected to any of these adjacent cells,

the algorithm investigates the east neighbours to find the way

to a partition having been started (Figure 1/c, 1/d). The

annexation criteria is examined for the east or second east

neighbouring cell and its north adjacent cell. If the

connection can be done, the cell Y is tested to be merged to

124

this partition. This is an important improvement of the

algorithm, because in this way the segmentation is symmetric,

the segments can expand to the right, too. If the cell cannot

be connected to any adjacent cells, it starts a new field

itself (Figure 1/e).

For the memory management the segments are examined after

processing a cell-row. If a segment cannot be continued, its

data (first and second order statistics) is written into stat.

file and can be deleted. Those segments come to the end in a

row, which exists in previously processed row and disappear in

the examined row.

Parzuneter selection

The segmentation algorithm has three essential parameters

mentioned above;

upper bound for cells' homogeneity: Cfj,

lower bound for annexation of a cell by one of its

neighbouring segment: Cĵ ,

upper bound for annexation of a cell by a segment: C 2 -

When increasing the value of cjj, the number of homogeneous

cells increases. If the value of c^ decreases and/or the value

of C 2 increases, there will be more homogeneous cells belonging

to a segment, therefore fewer segments of larger size will be

created.

Good parameter selection can be done by an iterative test.

SUMJIARY

The unsupervised algorithm for segmentation makes use of the

strong correlation of vectors in the neighbouring pixels. Some

modifications to the basic algorithm of segmentation was done.

1 2 5

These improvements are; choice between north and west-adjacent

partitions using distance functions, investigation east

neighbouring cells and memory management.

REFERENCES:

R.L. Kettig, D.A. Landgrebe: Classification of multispectral

image data by extraction and classification of homogeneous

objects. IEEE Transactions on Geoscience Electronics, Vol. GE-

14, No. 1. January 1976. . -'j

I. Fekete: Segmentation, clustering and classification by

segments, in: Programs for classification of multispectral

remotely sensed digital images. Methods and program schemes,

Guide for development (in Hungarian). ELTE, Budapest, 1983.

J. Farkasfalvy: Comparison of the per-point and per-field

classification methods in the processing of remotely sensed

data. 3rd Conference of Program Designers, ELTE, Budapest,

1987.

J. Farkasfalvy: Some problems of parameter selection in a

complex procedure of per-field classification. 4th Conference

of Program Designers, ELTE, Budapest, 1988.

1 2 6

Declarative and Procedural Style
of Logic Programming

Tibor Ásványi
(ELTE, Budapest, February, 1989.)

Abstract

This paper is about declarative eind procedural use
of Horn clauses.
My sp>ecial problem i*- how to make a PROLCXl prograun

from a set of Horn cl'.uses. Such a set is an exact
specification of the problem. After all, it is not
a method or an algorithm to solve the problem.
It only describes the problem.

Particulary, I deal with path-finding. It is not
trivial to madce a bridge through the gap between
declarative and procedural attention of path-finding
problems, even if the search space is finite.

Introduction

We can make PROLOG programs in the following way :

1, Describe the problem using Horn clauses.

I recommend this implication form:
- Our (problem specific) assertions have the

form of A <- .
- Our (general purpose) rules (procedures)
have the form of B <- Cl, C2..... Cn.

(n >= 0)
- Our goal statement have the form of
<- Dl, D2, . . . Dm. (m > 0)
(A, B, Cl..... Cn, Dl.......Dm

are atomic formulaes.)

2, We consider it a specification.

Then make up a theorem-proving system (control
component) to solve the problem using the clauses
above.

(Logic program = Logic + Control)

1 2 7

3, If it is the sajne as the PROLCXI control system,
it means success; STOP!

4, If not, the control system can be approached to
the PROLOG control system, simulate the previous
solution by reformulating the problem.

5, Go to 3.

Path-finding

problems can be expressed as follows:

’Given an initial state A , a goal state Z and
operators wlch transform one state into another, the
problem is to find a path from A to Z .’ (.1.)

The water containers problem Í.1.1

Given both a 7 and a 5 litre container, initially empty.
Three kinds of actions are allowed:

1, A container can be filled.

2, A container can be emptied.

3, Liquid can be poured from one container into the other,
until the first is empty or the second is full.

The goal is to find a sequence of actions wlch
leaves 4 litres of liquid in the 7 litre container.

If the water containers problem is considered as a
path-finding problem, a simple Horn clause formulation
can be used.

Interpret
State(u,v)

the state with u litres of liquid in the 7 and
V litres of liquid in the 5 litre container.
Let the

z=x+y , 2=x+y-u , x<=y and x>y
relations be given, as usually, on the integer type.

1 2 8

Kowalski’s Horn clause formulation is trivial:
(Lowei— case letters (maybe Indexed) are variables,
digits and other symbols are constants on the places
of simple arguments.)

! wcl State(0,0) <- . C'Initial state*)
[,' wc2 <- State(4, b) . C*Goal state*)

wc3 State(7,y) <- StateCx,y) . C*Filling *)
wc4 StateCx,5) <- StateCx,y) . C* a container*)

wc5 State(0,y) <- StateCx,y) . C‘Emptying *)
wc6 StateCx,0) <- StateCx,y) . C* a container*)

wc7 StateCO,y) <- StateCu,v) ,
y=u+v , y<=5 .

C‘Pouring from *)
C* one container into *)

wc8 StateCx,0) <- StateCu,v) ,
x=u+v , x<=7 .

C* the other until *)
C* the first is empty*)

wc9 StateC7,y) <- StateCu,v) ,
y=u+v-7 , y>0 .

C‘Pouring from *)
C* one container into *)

wclO StateCx, 5) <- StateCu,v) ,
x=u+v-5 , x>p .

C* the other until *)
C* the second is full*)

This set of clauses can be easily coded in PROLOG
but its running makes failures:

1, It makes an infinite recursion at the wc4 clause.

2, Even if we could eliminate the infinite recursions, the
running of the program would fail because of the top-down
control system: For example it could not solve the subgoal:
y=u+v . (Both u and v au'e undefined and it raises

a program error.)

Moreover a natural solving process of the problem does not
go from the goal to the initial state, but from the initial
state to the goal (for Instance) as follows:

Program development 1.

0, Let the initial state be at the place of the
’last generated assertion’.

1, Take the ’last generated assertion’.
Try to match it with the goal statement.

2, If it can be done, the program is finished: STOP!

1 2 9

3, Otherwise:

4, Match It with the first rule wich has not beer 'led.
Then try to eliminate the other conditions

(if they are exist) .
In this way you may get the next assertion.

I For exeunple:

5, If it is successful

A, and we have generated an assertion different from the
previous ones, let it be the ’last generated assertion’

and go to 1 .

B, Otherwise reject the new assert ion and take the
previous one. Go to 4.

6 , If the other conditions cannot be eliminated
take the ’last generated assertion’ again and go to 4.

7, If all the rules have been tried, reject the actual
assertion and let the 'last generated assertion’ be the

previous one. Then go to 4.

8 , If there is no previous assertion then
there is no solution. STOP!

Notes 1.

1, The solution found here is provided by the assertions
with the form of ’State(.,.) <- . ’ on the way of the
refutation found here.

1 3 0

2, The algorithm 0-8 above is appropiate in all those
cases when the state space is finite. (Here aj'e at the
most 2*8+2*6-4=24 states in the state space because one
of the containers is allways empty or full.)

If one point of the state space can be described by n
arguments, it can be representated using a predicate

State(xl,x2,....xn) .

Program development 2.

In order to approach to the PROLOG level of the algorithm
(logic program) above we should simulate it using a top-down
(goal-controlled) resolution (refutation) system.

We will use the problem solving interpretation of Horn
clauses. For example the rule (prodedure) ’ A <- B , C . ’
is interpreted as follows:

To solve A , solve B and then C

Interpret St(x,y,a,b) the goal, that you have to get
from State(x,y) to State(a,b) .

vcO
vcl
vc2

<- State(4,b) .
State(a,b) <- St(0,0,a,b) .
St(a,b,a,b) <- .

VC 3
vc4

St(x, y,a,b)
St (x, y, a, b)

<- St(7,y,a,b).
<- St(x,5,a,b).

vc5
vc6

St (x, y,a,b)
St (x, y, a,b)

<- St(0,y,a,b).
<- St(x,0,a,b).

VC 7
vc8

St(u,V,a,b)
St (u, V, a, b)

<- y=u+v , y<=5 ,
<- x=u+v , x<=7 ,

St(0,y,a,b).
St(x,0,a,b).

vc9
VC 10

St (u, V, a, b)
St (u, V, a, b)

<- y=u+v-7 , y>0
<- x=u+v-5 , x>0

, St(7,y,a,b)
, St(x,5,a,b)

Where our interpreter differ from PROLOG one only in the
fact that it makes a back-track from a goal statement of
the form ’ <- St(....,.) . ’ if it is the same as one
of its ancestors, as well as in the case of unsuccessful
solut ion.

1 3 1

)

Notes 2.

1, We suppose a PORLOG Interpreter wlch is looking for
only one solution.

2, Notice that if you could reformulate wcl-wc2 using
vc0-vc2 , uc3-wcl0 rules interpreted bottom-up can be
reformulated step by step as vc3-vcl0 rules interpreted
top-dovm.

3, The solution is provided by the goal statements of the
form <- St(.....) . , on the way of the refutation.

Program development 3.

There zu'e two problems to solve;

1, Not to generate a goal of the form <- St(.,....)
wich has been generated (as an ancestor) .

2, Providing an explicite output.

We can solve the first problem if we change St into
a five place predicate. (It will have the same name.)
The first four places play the same role. In the fifth one
we can collect the states achieved earlier (as ancestors)

A state can be represented by a term s(.,.) .

Consider the program bellow, as if it were withouth the
last place in each of the atomic formulaes St and State .

cO <- State(4,b, 1)
cl StateCa,b,1) <- St(0.0,a,b, s(0,0).nil , 1)
c2 St(a.b,a,b, 1. 1) <- .

c3 St(x,y,a,b,h, 1) <- Not(Elem(s(7,y) ,h)) ,
St(7,y,a,b, s(7,y).h ,1)

c4 Stfx,y,a,b,h, 1) <- Not(Elem(six,5) ,h)) ,
St(x,5,a,b, six,5).h ,1)

c5 St(x,y,a,b,h, 1) <- Not(Elem(s(0,y) ,h)) ,
St(0,y,a,b, s(0,y).h ,1)

c6 St(x,y,a,b,h, 1)
f

<- Not(Elem(s(x,0) , h)) ,
St(x,0,a,b, s(x,0).h ,1)

1 3 2

c7 St(u,V,a,b,h,1) <- y=u+v , y<=5 ,
Not(Elem(s(0,y) ,h)) ,
St(0,y,a,b, s(0,y).h .1)

c8 St(u,V,a,b,h,1) <- x=u+v , x<=7 ,
Not(Elem(s(x,0) ,h)) ,
St(x,0,a,b, s(x,0).h ,1)

c9 St(u,v,a,b,h, 1) <- y=u+v-7 , y>0 ,
Not(Elem(sC7,y) ,h)) ,
St(7,y,a,b, s(7,y).h ,1)

clO St(u,v,a,b,h, n <- x=u+v-5 , x>0 ,
Not(Elera(s(x,5) ,h)) ,
St(x,5,a,b, s(x,5).h ,1)

cll Elem(x,x.y) <- .
cl2 Elem(x,y.z) <- Elera(x,z) .

cl3 Not(x) <- X , !

cl4 Not(x) <- .
FAIL . (* is a ■)

(• predicate! •)

A possible solution of the second prolem
is the program above as a whole.
Applying c2, we get a possible form of the output in the

last place of St . (It is the reserved list of the way
from s(0,0) to s(4,b) .)

So the last places of St and State are needed to gain
the output in the goal statement.

Notes 3.

1, Notice, if we write the c3-cl0 clauses in the order
c7-cl0 , c3-c6 , we can increase the effectiveness of
the PROLCXS code.

2, One can argue against the program, that it tries to solve
the goals of the form ’ <- St(.........) . ’ already
recognised (in another way) as unsolvable goals.

But it is a basic problem, because any PROLOG backtrack
forgets the information generated by trying to solve a
subgoal, when it is recognised as unsolvable and is
rejected. Each of the possible solutions need new means.

1 3 3

A, One of the possible solutions is generating negative
lemmas (.1.) , (.5.) . ’Negative lemmas ... need to
be generated when a subgoal is recognised as
unsolvable. Negative lemmas can be used to recognise
that the same subgoal is unsolvable when it arises
in euiother context.’ (.1 .)

B, One other possibility is a PROLOG, but no logical
means: The usage of global variables wlch are not
chEuiged when a backtrack is raised. All the states
achieved, have been put into a global list.
We check if there is an Elem relation between the
actual state and the list.

Summary

It is trivial now, that the notion of logic prograjns is
not the same as the specification of problem using a well
defined logic formalism. But it is not equal with any
PROLOG .

We can see: Logic prograjn = Logic + Control .

The specification of the problem is the abstract logic
component.

The abstract program is the specification
(or a logically equivalent formulation of the problem)

+ a matching control component.

The development of a concrete logic program means to
trEinsforme these two components,
until the appropiate form is achieved, it can be
written in an available or specially designed
programming language (PROLOG) .

1 3 4

R e f e r e n c e s

(.1.) Kowwalskl, R.A. : Logic for Problem Solving.
North Holland, 1979.
(Amsterdam, New-York, Oxford)

(.2.) Lloyd, J.W. : Foundations of Logic Programming.
Springer-Verlag, 1984.
(Berlin, Heildelberg, New-York)

(.3.) Lovelsind, D. V. : Autamated Theorem Proving:
A Logical Basis.

North Hollamd, 1978.
(Amsterdam, New-York, Oxford)

(.4.) Nilsson, D.W.: Principles of Artificial Intelligence.
Springer-Verlag, 1981.
(Berlin, Heildelberg, New-York)

(.5.) Earley,J.: An Efficient Context-free Parsing Algorithm.
CACM, pp.94-102., 1970.

(.6 .) Clockskin, W.F., Hellish, C.S.: Programming in PROLOG.
Springer-Verlag, 1981.
(Berlin, Heildelberg, New-York)

1 3 5

r - f -V 'T . : -í ?;•

' - f'l

Z- ** "̂ r
4 i

'V . ‘ ' •'-3.
1 — í9*:‘

-• '.!=■ *’

, e w , .X ^ ft

êr - A'-' • '
’ .5 0 1 » > »

I J
i 1

'It ANOTHER INTRODUCE TO CONSISTENT ALGORITHMS

Tibor Gregorios

Eötvös Loránd University
Depzu'tment of General Computer Science

Budapest

ABSTRACT This paper defines a class of the
graph-seau'ch algorithms maJcing the monotone
restriction wider within the class of the
algorithms A. It is proved that these
algorithms, we call consistent algorithms
(algorithms a '̂), are admissible and preserve
their original properties. Another result of
this paper is a proof that the class of the
algorithms A^ is a subclass of the algorithms
A .

1. INTRODUCTION

A number of problems in the Artificial Intelligence (AI) area

can be related to the general problem of finding a path through a

space of problem states from the initial state to a goal state. In

this state-space representation any problem can be treated as a

directed graph. To get a solution to that problem means thus to

find a path in the graph from the start node to a goal node.

ar- r

Severe! search techniques have been developed, which use

heuristic Information, i.e. special knowledge available from the

problem domain in order to solve this search problem in an

efficient way. Among the heuristic graph-search aigorithms we have

the class of the algorithms A [Nilsson, 82] encompassing the

class of the algorithms A [Hart, 6 8].

1 3 7

In this paper we are going to show that the monotone

restriction [Nilsson, 82] ceui be maide wider within the cl2LSs of

the algorithms A, the class of these algorithms is admissible and

it can be encased in the class of the algorithms A .

2. GRAPH NOTATION

A graph is defined as a set of nodes N, and a set of arcs A.

Each arc is directed from a node to another one. We use the

notation c(n,m) to denote the cost of an arc directed from the

node n to the node m. We aissume that these costs are all higher

than some arbitrarily small positive number 5. Each node of the

graph of our research has only a finite number of arcs. Let T be

the set of the goal nodes of the graph. We call these directed

0-graphs representation graphs [Handbook, 82].

The cost of a path from one node to another is the sum of the

costs of all the zu'cs connecting the nodes on that path. We want

to find the path of minimal cost between s and any member of the

set T in any problem. We call this path the optimal path. We will

g (n) = cost of optimal path from s to n, if there exists a

path between s and n.

cost of minimal path from n to the closest member of

T, if there exists a path between s and T, otherwise

h (n) * <».

cost of minimal path from s to the closest member of

T constrained to include node n, i.e.

h (n)

f*(n)

constrained to

f (n) » g (n) + h (n).

The algorithm A with minor formal modifications is the

following.

138

Procedure GRAPHSEARCH

G ♦- {s>: OPEN ^ {s>; g(s) <- 0; p(s) «- nil

« n ^ s

while not (goal(n) or empty(OPEN)) loop

OPEN OPEN \ {n>

M r(n)

while not empty(M) loop

m *■ member (M)

If m Í G or else g(m) > g(n) + c(n,m) then

g(m) «- g(n) + c(n,m); p(m) «- n

OPEN «- OPEN u {m>

endlf

endloop

G <- G G r(n)
n «- min^(OPEN)

endloop

end GRAPHSEARCH

where

- G contains the actual subgraph of the representation graph

built explicitly by the algorithm we call search graph.

- OPEN is the set of nodes which have not been expanded

yet.

- r is the successor operator which generates all of

successors of any node.

- U moves all the successors of any node together their arcs

into the search graph G.

- M is the set of the successors of any node.

- p is a pointer directed from a node back to any of its

parents.

- g(n) is the cost of the path from s to n in G.

- f is the evaluation function which can be calculated for

any node n as f(n) = g(n) + h(n) where the heuristic

function h greater than or equal to the zero function.

139

We known that the algorithms A always find a path from steirt

node s to a goal node (of T) if there exists a path between s and

T (Fekete, 8 8]. When the algorithm A uses an h function that is a
* * «

lower bound on h (hsh), we call It algorithm A . This algorithm

is admissible, i.e. it always finds an optimal path from the start

node to goal nodes whenever this path exists [Heirt, 6 8],

3. ALGORITHM A

We call the algorithm A algorithm when the heuristic

function h satisfies the monotone restriction (i.e. for all nodes

n emd m, where m is a successor of n, h(n] - h(m) s c(n,m)), and

h(t) = 0 for each goal node t.

Now we show that the algorithm A is admissible, i.e. if

there is a path between the stairt node s and the set T the

algorithm terminates by finding an optimal path.

Lemina 1. For any node n and m on an optimal path from s to

n, where m is a descendant of n
• «

g (n) + h(n) s g (m) + h(m).

Let the ordered sequence P = (s=np,n^, ... ,nĵ =n) be this

optimal path. Using the monotone restriction, we have the
« »

g (n^) + h(n^) s g (n^) + c(n^,n^^^) + h(n^^^)

(i = 1k-1)

for any nodes nĵ and where is the successor of n^ on

the optimal path P. Since n, and n, , are on an optimal path

g + = g + c(n^,n^^^) (i = 1k-1)

therefore

g (n^) + h(n^) s g (n^^^) + h(n^^^) (i = 1k-1)

By transitivity of i, we find that

g (n^) + h(.n̂) s g (nj) + h(nj) (i<J, i,J = 0 , ... k).n

1 4 0

Lemma 2. At any time, before the algorithm A terminates,

■ there exists a node n In OPEN that Is on an optimal path from

the start node s to the goal set T with fCn) s f (n).

know that, there always exists a node n in OPEN that is on

an optimal path from s to a goal node t_^before termination

[Nilsson, 82]. Let the ordered sequence Cs=nQ,n^.......

this optimal path, and we assume the node n is the first node in

this sequence that is in the OPEN. (There must be at least one

such node because s is in OPEN at the beginning and if t is

removed from OPEN the algorithm has already terminated.) Obviously
«

g(n) = g (n), because all the ancestors of n on this optimal path

are expanded.

Using this equation and lemma 1, we have that

f(n) = g(n) +h(n) = g (n) + h(n) s g Ct) + h(t) =

.* = g (t) = f (s). ■

Theorem. The algorithm A is admissible.

We know the algorithm A terminates by finding a goal node if

there is a path from the start node s to any goal node. Next we

are going to show that the algorithm A is guaranteed to find an

optimal path from s to a goal node.

Suppose the algorithm A were to terminate at some goal node

t without finding an optimal path, i.e. f(t) > f (s). But, by the

lemma 2, there existed a node n in OPEN Just before the

termination and on an optimal path from s to a goal node t with
* c

f{n) s f (s). Thus, at this stage, the allgorithm A would have

selected n for expansion rather than t, contradicting our

opposition that the algorithm A was terminated.■

j/S r

1 4 1

All the properties of the monotone restriction algorithm A

proved by Nilsson [Nilsson, 821 can be preserved on the algorithm

A , since those proofs do not exploit the fact that the algorithm

is in the class of the algorithms A . The most important

property is the following: The algorithm A*̂ has already found an

optimal path to any node selected for expansion, l.e. if the

algorithm selects n for expansion, g(n) = g (n).

4. RELATIONSHIP BETWEEN THE ALGORITHM AND ALGORITHM A*

Now we have two admissible classes of algorithms: the
c •

algorithms A euid the algorithm A . Both of them are in the class

of the algorithms A. Let us examine their relationship.

We should like to show that class of the algorithms A
0

encompasses the c I e l s s of the algorithms A , i.e. if the heuristic

function h satisfies the monotone restriction and h(t) = 0 for
• »

each goal node t then h is lower bound on h (i.e. h(n) s h (n)

for each node n).

If n is a goal node, we have h(n) = 0 and h (n) = 0 for
»

definitions, therefore h(n) s h (n).

If n is not a goal node and there does not exist a path

between n and any goal node, we have h (n) = a for definitions, so

causing h(n) s h (n).

If n is not a goal node and there exists a path from n to

goal nodes, the proof is the following.

We assume that the sequence (n=nQ,n^, ... ,n^=t) is am

optimal path from n to the closest goal node t. Using the monotone

restriction we find that

142

h(n) - h(n^) s c(n ,n^)

h(n^) - h(ii2) s c(n^,n2)

h(n^_j) - h(t) s

The sum of these inequities is
k

h(n) - h(t) s J] c(n, ,.n,).
i=l ^

Since h(t) = 0 and h (n) = J c(n, ^.n.} for definitions,
i*l ^

therefore we obtain

h(n) s h (n).

5. CONCLUSION

eiv'
Q

We saw that the class of the algorithms A ■is Identical with

the monotone restriction algorithms A by Nilsson. Henceforth it

is enough to show that a heuristic ftinction h satisfies the

monotone restriction and h(t) = 0 for each goal t to get an

sulmissible algorithm. It is easier to find a heuristic function of

this kind than heioristics satisfying that h is lower bound on h ,

generally not known.

143

REFERENCES

[Fekete, 8 8] Fekete, I., Gregorios, T., Varga, L. Zs.:

Corrections to Graph-searching Algorithms

Fourth Conference of Program Designers,

ELTE, Budapest, 1388.

[Ifeuidbook, 82] Barr, A. , Feigenbaum, E. A. :

The Haindbook of Artificial Intelligence I.

HeurisTECH Press, Stamford, 1982.

[Hart, 6 8] Hart, P. , Nilsson, N. J. , Raphael, B. :

A Formal Basis for the Heuristic Determination h i

of Minimum Cost Paths

IEEE Trans. System, Man and Cybernet, 4, 1968.

[Nilsson, 82] Nilsson, N. J. :

Principles of Artificial Intelligence

Springer-Verlag, 1982.

-O'-J TÖ*

• ÚÍ ’

i

■ ^ *

1 4 4

Connection between AND/OR graphs and
simple directed graphs

Sára Nagy

Eötvös Loránd University
Department of General Computer Science

Budapest

Abstract

In general the problem space of a problem-reduction
representation can be modelled as an AND/OR graph. The
AND/OR graph describes well the substitution of a problem
with its subproblems. However the search procedures in
the AND/OR graphs are more complicated thain in the simple
directed graph. Therefore our interest is to observe the
procedures wich produce an equivalent directed graph out of
aui AND/OR graph.

This paper describes precisely the way of this
transformation. It also examines cases when costs are given
to arcs of the AND/OR graph. It presents how to find a
solution in an AND/OR graph out of the solution of a
directed graph.

1. Introduction

A problem can also be solved by attempting to reduce it
to its components. The subproblems are simpler than the
original problem. The received subproblems can be reduced
in further components. The reduction is finished if we have
got only primitive and/or unsolvable problems. We say that a
problem is primitive if we know its solution. We say that a
problem is unsolvable if we know from somewhere that no
solution of the problem exists or we don’t know the solution
of the problem and we ere unable to reduce it.

AND/OR graphs can be used as a model of the problem
space of problem-reduction representations. In a problem-
reduction representation the original problem / and
recursively each subproblem / is not only divided into
subproblems but it can be substituted by other problems.

1 4 5

In AND/OR graphs the problems are associated with nodes. If
all of the subproblems must be solved in order for the
original problem to be solved, the nodes which represent
these subproblems are AND successors /they are denoted in
our illustrations by a curved line joining the arcs/.
Otherwise the problems are OR successors of the original
problem.

In the course of our examination we make an effort to
avoid the mixed ramifications. A mixed reunification can be
eliminated with the Initiation of new nodes.

2. Production of directed graphs out of AND/OR graphs

There are many search strategies for AND/OR graphs, but
they can be put into practice with difficulty. For this
reason it is interesting how we follow the search in an
AND/OR graph with the aid of a directed graph. In reality we
give a directed graph model of the problem space of problem-
reduction representation instead of AND/OR graph model.
Although the AND/OR graph model of the problem space is
more clearly arranged than the directed graph model, the
latter can be put to better use because here the well-known
seanch strategies can be used.

Let’s see how an AND/OR graph is formulated as a
directed graph. Suppose that the all nodes of the AND/OR
graph have a label. Now we describe how to produce a
directed graph from an AND/OR graph:

1. Attach a label to the root node of the directed graph. In

the directed graph all the labels make a set of labels.

The set of the labels of the root includes only the label

of the root node of the AND/OR graph. Put the root node

on a list called WORK-UP.

2. If WORK-UP is empty then stop.

3. If WORK-UP isn’t empty then select the first node on the

list and omit it. Call this node n. Assume that the set

of labels of n is equal to{n^,. . . ,n̂ }̂ / n̂ ̂ is a label in

AND/OR graph/.

1 4 6

4. Repeat the followings k times:

4.a If has OR successors then install successors of

the same quantity of n In directed graph as the

number of OR successors. A successor Is labeled by

replacelng n̂ with Its corresponding successor in the

set of labels.

4.b If has AND successors then install only one

successor of n in directed graph and replace n̂ ̂ with

the set of labels of all its successors.

/Having got a node already exiting in a directed

graph then it isn’t necessary to install a new node

only a new arc./

5. Put the new nodes on WORK-UP.

6 . Go to 2.

Figure 1 illustrates a problem space by AND/OR graph.
The primitive problems in the graph are indicated by solid
circles and the unsolvable problems by empty circles.

Figure 2 shows the directed graph corresponding to
AND/OR graph in Figure 1. This directed graph is modeling
the same problem space as the .AND/OR graph. In the directed
graph we frauned the terminal nodes. We say that a node is
terminal in this directed graph if all members of its label
set denote prlmitiv problems.

Figure 1.

{B.E.Fj

1 4 7

Observe that our algorithm defines too big state space
because it contains too much essentially equivalent paths.
For example in Figure 2 two paths are directed to node E,F .
These paths aren’t essentially different because ones we
dealt first node C and then node B and next we dealt first
node B and then node C.

Thus the step 4 of the algorithm must be modified:

4’. Select a label with label set of node n and call this

label n̂ .

The 4.a and 4.b correspond with the afore-mentioned.

When we select a n then it is advisable to give
preference to nodes with AND successors because thus the
number of nodes in a directed graph there will be few nodes
them in other case / see Figure 4. a and 4.b /. If we
transformed the AND/OR graph in Figure 3 original algorithm,
we would have a graph with 42 nodes. It can be seen in
Figure 4.b that only 16 nodes are sufficient.

Since any AND/OR graph can be forrauleted as a directed
graph, it is easy • to see that an algorithm for searching
AND/OR graphs which is structurally the same as the one for
seau'ching directed graphs can be defined. The algorithm can
be defined by selecting a node to expeind and a label as well
from its label-set. Then we must expand it according to 4.a
or 4.b. The algorithm is terminated if it reaches a node
with a label-set containing only primitive problems. If
there is an unsolvable node in the label-set of any node, it
isn’t worth working with it.

Figxire 3.

148

Figure 4.a Figure 4.b

A solution subgraph has been genereted for AND/OR graph
by directed graph by considering solved nodes corresponding
to the label-set of the terminal node in directed graph.
Then a node is solved if it has OR successors at least one
of which is solved or it has AND successors all of which are
solved. / This definition assumes that our AND/OR graphs
contain no cycles./ In Figure 1, 3 and 5 the derkened arcs
indicate a solution graph for those AND/OR graph.

1-'
3. The cost of solution graphs

Analogoue to the directed graphs, it is often useful to
assign costs to arcs of AND/OR graph. Thus we can consider
costs of solution graphs. In this caise it isn’t only the
goal is not only to find a solution graph but to find a
optimal solution graph /minimal cost of solution graph/.
The cost of a solution graph is usually tsdcen determined by
the sum of the costs of the arcs madceing up the solution
graph.

Let k(n,C) denote the cost of a solution graph rooted
at node n. If n is an element of C where C is the set of
terminal nodes, then k(n,C):=0. Let c(n^,nj) denote the cost

1 4 9

of the eirc between n̂ ajid nj.Let be the successors

of n elements of the solution graph. Then
k

k(n,C):= £ c(n,n^) + kCn^.C).

1=1
We note that In this definition of the cost of a solution
graph the costs of some arcs in the solution graph might be
counted more thaui ones. Thus, the cost of the solution graph
in Figure 5 is 14 if the cost of each arc is one.

: '1 .

, r-rl-

- Figure 5.
•h

If we want to take also the cost into add up then we
must put down the nodes*of AND/OR graph by multiplying then
into the label-set. In the directed graph the cost of an arc
is equal to the cost of arc in AND/OR graph if it is
directed to an OR successor, or the sum of costs of arcs
directed to AND successors. Figure 6 illustrets the search
outlined above.

} ud

'S

1 5 0

1 . s t e p

2.

3.

A .
B . < ̂ \ C

4.

5.

lo.

FGC

6 .
7.

8 .

9.

l o .

IFIFIIKI IFIFIILI

F i g u r e 6 .

1 S'!

R e f e r e n c e s

1. P. P. Chakrabarti, S. Chose and S. C. DeSaLTkar,
Admissibility of AO* When Heuristics Overestimate,
Artificiel Intelligence 34, 97-113 (1988).

2. C.L. Chang and J.R. Slagle,
An admissible and optimal algorithm for searching AND/OR graph,
Artificiel Intelligence Journal 2, No.2, 117-128 (1971).

3. A. Mahanti and A.Bagchi,
AND/OR graph heuristic search method,
I. ACM 32 (1) (1985) 28-51.

4. N.J.Nilsson: Principles of Artificiel Intelligence •
(Sprlnger-Verlag, 1982.)

5. J. Pearl: HEURISTICS: Intelligent Search Strategies for Computer
Problem Solving
(Addison-Wesley Publishing Company, 1984.)

6 . C.J.VanderBrug,
Problem Representations and Formal Properties of Heuristic Search
Information Science 11, 279-307 (1976).

1 5 2

Proposals for design of process control operators’

computer information systems

Lajos Izsó

Technical University of Budapest

Teachers’ Training and Psychological Institute

Department of Ergonomics

1. Common usage of man-computer task allocation In process control

systems

Though theoretically the relative performance advantages of men and

machines are well known automation of industrial processes may expand

rather than eliminate problems with the human operator. As BAINBRIDGE

(1983) wrote there are some ironies of automation the most significant

ones of which from our point of view are eis follows.

- The system designer’s view of the human operator generally is that he

or she is unreliable and inefficient, so should be eliminated from the

system. There are two ironies of this attitude. One is that - as the

designer himself is a man too - the designer’s errors can be a major

source of operating problems. The second is that the designer who

tries to eliminate the operator still leaves the operator the tasks

which he cannot think how to automate. So finally the operator can be

left with an au'bitrary collection of tasks auid little thought may have

been given to providing support for them.

- If the human operator must monitor the details of process computer

decision maJclng, it is necessary for the computer to make these

decisions using methods and criteria, and at a rate, which the

operator can follow, even when this may not be the most efficient

method technically. If this is not done then when the operator does

not believe or agree with the computer he will be unable to trace back

through the system’s decision sequence to see how far does agree.

1 5 3

- If because of his or her bad previous experiences the operator doesn’t

trust the computer, the use of computer increases the operator’s

strain instead of decreasing it. EPHRATH (1980) - cites BAINBRIDGE

(1983) - has reported a study in which system performance was worse

with computer aiding, because the operator made the decisions anyway,

and checking the computer added to his workload.

2. The role of operator’s cognitive model on the system to be controlled

in the effectiveness of the operator’s activity

In a process control system there eire two general kinds of task

left for an operator. The operator may be expected to monitor that the

system is operating correctly, and if it is not he or she may be

expected to take over and stabilize the process. To take over requires

meinual skills, to diagnose the fault as a basis for shut down or

recovery requires cognitive skills. For the designer of the computer

Information system the cognitive skills are of great importance. An

operator will only be able to generate successful new strategies for

unusual situations if he or she has an adequate knowledge of the whole

system, including first of all the process to be controlled Itself. The

significance of the operator’s cognitive modell in the effectiveness hais

been many times verified - e. g. HALPIN at al (1973), BRIGHAM and LAIOS

(1975), LANDEWEERD (1979), LANDEWEERD at al (1981), ANTALOVITS (1985),

(1986) - now the main problem is how to design computer information

systems which are in accordance with the operators’ basic knowledge on

the process and at the same time can help the operator to build up more

and more adequate and of higher and higher fidelity cognitive models.

Concerning operators’ basic knowledge there are different interface

design recommendations depending on wheter the operator is naive,

novice, competent or expert (CHAFIN(1981)).

In contrast with tsisks such as database searching, text editing and

progreimming which are relatively static in the sense that they are paced

by the human’s decision, the industrial processes are dynamic systems,

as their future outputs depend on their past outputs, as' well as on

inputs generated by humans, computers, and the enviroraent. That is why

1 5 4

the time factor has a particular importance in the cognitive model: “the

system does not wait for the human or computer to make decisions" -ROUSE

(1981). As the system "does not wait" the process may get out of the

control and it may lead to damages or even to catastrophe.

For preventation of such faults there is a need for an effective

process computer alarm system. For the alarm system extraordinarily

strict requirement all the displayed informations to be consistent with

process model and to be self-consistent as well. As am example, it is

known, that in 1979 the nuclear reactor at No. 2 Station, Three Mile

Islauid, Pennsylvania, suffered aui accident sequence which resulted in

severe core damage auid in some radioactive releaise. The operators

experienced problems in diagnosing the faults - LEES (1983) - amd that

the failure to diagnose correctly was a major factor in the accident.

The operators failed for over 2 hr to recognize that a pilot-operated

relief valve, which had supposedly opened auid then closed, had in fact

remained stuck open. The operators failed to realise too that under the

abnormal conditions prevailing, the indication of water level in the

pressuriser vessel was not a true indication of water content in the

reactor vessel. In both cases there were several pieces of Information

which were true Indicators of the system state but also some information

which appeared to be inconsistent with this state. Judging by data

available it seems very probable that, at least partly, similar causes

led to accidents in Fllxborough and in Chernobil too.

An important role of computer information system can be Interpreted

on the basis of cognitive psychology. It is known that the span of Short

Terra Memory (STM) equals 7+2 “units", but these "units" may be very

simple (e. g. letters), of medicum complexity (e. g.syllables or words)

or complex (e. g. common sayings or poem-details). MÉRÖ (1988) defines

these “units" sis “patterns" smd in accordsuice with experiences he

postulates that a “pattern" can be stored in STM only if this pattern

already has a representation in Long Term Memory (LTM). From this for

the designers of information systems it follows that they must design

the systems so that these systems should be able:

- to inform the operator about the state of the process in accordance

with his or her actual cognitive model (e. g. by displaying data

155

really relevant, by using technical terms operators accustomed to

etc.)

- to provide informations In a way suitable to form more and more

complex "patterns" of the parameters characterising the process

- to be easily modified by the operator if his or her more complex

"patterns" make it imperative.

3. Experiences gained in the Szolnok Paper Mills in the course of

installation of am up-to-date computerized process control system

In 1982 began the Installation of the new computerized paper

manufacturing line in the Szolnok Paper Mills the total cost of wich wzis

over 62 millions USS s. We took part in the personnel selection and in

the period 1982-86 we had been also following with attention the

in-service suitability of the 25 process control operators chosen from

among 141 nominees. Here are summarized only the main experiences

relevant to information system design, for further details see

IZSÓ (1988/1), (1988/2).

- The computerized process control activity requires quite different

cognitive skills theui the manual control.

1. The new system began to manufacture in January 1984 by mamual

control till April and since then by computer control. The

effectiveness of the control measuring by the total break-down time

in January, February, March and April did depend on the shift

(group of operators) while an May, June, and July did not. After a

year, as new cognitive skills had been developed, differences occur

again but in a changed order of succession.

2. The correlation coefficiens between the effectiveness of the

control and the effectiveness of a computer-simulated simple

process control task were as follows;

in 1982 r=0,230 (n=ll, n.s.), working on the old paper-line whith

no computer aid

in 1984 r=0,359 (n=15, n.s.), working on the new paper-line, > 4

since May with computer control, but still not in a

skilled way

1 FP

In 1986 r=0,567 (n=16, p<0,05), working on the new papei— line in

the consolidated system with computer control and in

skilled way.

- Without user-friendly software Interface and appropriate teaching

courses the formation of more complex cognitive patterns goes on very

slowly. Till the summer of 1985 some very informative display reports

practically were not called by the operators on the VDUs because these

were not compatible with their relatively undeveloped cognitive

models. For example:

1. The trends, i.e. the graphic or tabular presentations of the

progress of paper parameters in time were permanently disregarded.

2. The histograms, i.e. the presentations of distribution functions

graphs of paper parameters were also disregarded. The main problem

probably was the mathematical formulation, since such quantities as

"2 sigma" had no meaning for the operators at all.
3. Roller analysis, i.e. informations about the quantity of paper

already rolled up at the end of the papei— line also was never

called. This informations would be very important for the workers

of finishing-room, but they did not know this possibility, the

process operators however were not Interested in it.

4. Digital data display, i.e. displaying any measured data available

for the computer was also rarely used, because for using it the

operator ought to know the concrete memory addresses of the data.

4. Some general proposals for design of process control operators'

computer information systems

The computer information systems should

have a clear, relatively simple and fixed in written form

process-model to be taught in the preparation courses which is at the

same time flexible enough to provide a baisis for further in-service

development of this model

- have a simple model of data collecting and information system too also

to be bought

1 5 7

- provide all the Informations in accordance with this baislc cognitive

model

- give possibility for the operators to design (to choose, to combine and

to reprogramme) their screen formats, graphic or tabular presentations

and data to be displayed within limits

- be able to simulate typical process-disturbances by the help of

mathematical model amd also to reproduce events already taJcen place

for training of process operators thus providing then possibility to

form more and more complex “patterns''.

References

1. ANTALOVITS, M. 1985. Információ feldolgozás az operátori

tevékenységben (kandidátusi értekezés), Budapest

2. ANTALOVITS, M. 1986. Information processing in the activity of

operators (abstract of Ph. D. Thesis), Budapest

3. BAINBRIDGE, L. 1983. Ironies of Automation, Automatica, Vol. 19. No.

6. pp. 775-779.
4. BRIGHAM, F. R. , LAJOS, L. 1975. Operator performance in the control

of a laboratory process plant. Ergonomics, 18, 53-66.

5. CHAFIN, R. L. 1981. A model for the control mode man-computer

Interface. Proc. 17 th Ann. Conf. on Manual Control, UCLA. JPL

Publication 81-95, pp. 669-882.

6. EPHRATH, A. R. 1980, Verbal presentation. NATO Symposium on Human

Detection and Diagnosis of System Failures, Roskilde, Denmark.

7. HALPIN, S. M. , JOHNSON, E. M. , THORNBERRY, J. A. 1973, Cognitive

Reliability in Manned Systems. IEEE Transaction on Reliability, Vol.

R-22, No. 3., 165-169.

8. IZSÓ, L. 1988/1, Az emberei megbízhatóságot meghatározó hardver-,

szoftver— és feladatJellemzök ember-számi tógép rendszerekben.

(Kutatási Jelentés.) Kandó Kálmán Vlllamosipari Műszaki Főiskola,

Budapest

9. IZSÓ, L. 1988/2, Factors influencing human reliability and strain in

man-computer systems. (Research report). Thecnical University of

Budapest, Department of Ergonomics, Budapest

158

10. LANDEWEERD, J. A. 1979, Internal representation of a process, fault

diagnosis and fault correction. Ergonomics, 22, 1343-1151.

11. LANDEWEERD, J. A., SEEGERS, H. I.J.L. , PRAAGMAN, J. 1981, Effects of

instruction, visual Imagery and educational background on process

control performance. Ergonomics, 24, 133-141.

12. LEES, F. P. 1983, Review pap>er. Process computer alarm and

disturbance analysis: review of the state of the art. Computers and

Chemical Endineering, Vol. 7, No. 6. pp. 669-694.

13. MÉRÖ, L. 1988. A mesterséges intelligencia és a kognitív

pszichológia kapcsolata (tanulmány), Eötvös Loránd Tudományegyetem

BTK Kísérleti Pszichológiai Tanszék, Budapest

14. ROUSE, W. B. 1981, Humauii-Computer Interaction in the Control of

Dynamic Systems, Computing Surveys, Vol. 13, No 1. 71-99.

15. SINGLETON, W. T. 1974, Man-Machine Systems, Penguin Modern

Psychology, Cox Wyman Ltd. London

1 5 9

}■ ■

> - ■

. ■ ' • I ■

■■ -./Jvaitl
• 'I ■ o

■ --VÍ*

r- - -.lov

■ ' ' fell

■' .

' ■ ■ ■ rXé

T t

1*11

’ ■ ^ -iS fl

%<

C O N N E C T I O N S BETWEEN AI AND COGNITIVE PSYCHOLOGY

László Mérő

Loránd Eötvös University

Depart m e n t of Experimental Psychology

Abstract

This paper briefly examines four major points in the

c o n n e c t i o n s between AI and cognitive psychology. First, some

results of c o g nitive ps y s h o l o g y suggest that there may be

signif i c a n t p r i n cipial d i f f e rences between human information

proces s i n g and the c ommonly used frameworks of AI. Our

second point is that nevertheless, the research motives of

these d i s c i p l i n e s are common in many aspects. Third, the

import of some results in cognitive p s y c h o l o g y to AI are

considered, e.g. what volume of cognitive schemata should be

incorp o r a t e d into an intell i g e n t system? Fourth, the import

of some results in AI to cognitive ps y c h o l o g y are also

investigated: the ch a n g i n g of our notions about intelligence

and c r e a tivity in the light of the AI results.

1 6 1

I. Should AI find Its f o u n d a t i o n s in p s y c h o l o g y ?

The inventors of most of the c o m m o n l y used AI

techniques, like frames, semantic networks, rep e r t o r y grid

analysis, etc. try to find some p s y c h o l o g i c a l b a c k g e o u n d to

support the p r o p o s e d archi t e c t u r e . This kind of efforts

shows that AI r e s e a r c h e r s are not tot a l l y sa t i s f i e d with

their t h e o r etical foundations: the pure l y mathem a t i c a l

and/or e n g i n e e r i n g m e t h o d s did not result in really

intell i g e n t programs. AI, as an e n g i n e e r i n g / m a t h e m a t i c a l

d i s c i p l i n e should not n s c e s s a r i l y be in t e r e s t e d in

a l t e r n a t i v e wor k i n g ways of the same perfor m a n c e , i.e. in

natural intelligence. Nevertheless, AI is d e f i nitely

i n t e rested in our k n o w l e d g e about human i n t e l l i g e n c e because

it o u t p e r f o r m s all of today's AI products. This int e r e s t is,

however rather selective: AI r e s e a r c h e r s take gladly

co g n i z a n c e of p s y c h o l o g i c a l models and results that support

their way of t hinking w h ile more or less ne g l e c t s those

results that c o n t r a d i c t it.

Cognitive p s y c h o l o g i s t s are st r o n g l y in t e r e s t e d in the

s h o r t c o m i n g s of our thinking, as the subjective

p r o b a b i l i s t i c j u d g e m e n t s that are so m e t i m e s very false. Let

us show just one example. Suppose there is a city where only

two colors of cars exist: green and blue. 85% of the cars

are blu, the other 15% are green. Once upon a time a driver

failed to stop after r oad accident. However, there was a

wit n e s s who a s s e r t e d that the c r iminal car was green.

P s y c h o l o g i s t s have i n v e s t i g a t e d the p e r c e p t i v e c a p abilities

1 6 2

of the witness and r e alized that his j u d gement of color at

the given speed is correct only in 8 0 ’-. of the cases. The

question arises; what is now the p r o b a b i l i t y that the

criminal car was really green?

Most of the people give a ra d i c a l l y wrong estimate on

this question. A very frequent answer is 80%, but very few

people say less than 50%. On the other hand, this pro b l e m is

clearly a B ayesian one, and it is easy to compute using the

Bayes theorem, that the correct p r o b a b i l i t y is 41%. When we

are looking to the pro b l e m in another way, this result might

be highly intuitive: the witness increased the probab i l i t y

of being the car green from the initial 15% to a 41% ^

posteori p r o b a b i l i t y - quite a nice i n c r e a s e m e n t . However,

our normal intuition looks to the p r o b l e m from quite a

different aspect and the result is su r p r i z i n g for most of

us. This example is not the least singular: similar kinds of

results abound in c o g nitive psychology. The r e ferred

literature c ontains a great deal of f a l lacies in our

e veryday thinking. Even w e l l - t r a i n e d p r o f e s s i o n a l scientists

are prone to many kinds of severe errors when their

p r o b a b i l i t y e s t imates and i n f erring me c h a n i s m s are

c h a l l e n g e d .

Now a very hard q u estion arises: should an AI system

follow the shortc o m i n g of the human es t i m a t e or not? If we

say yes, the p e r f o r m a n c e of our AI sys t e m will suffer. If we

say no, the original sin of a b a n doning the way of human

i n t elligence will have been committed. As an engineer, I

must s uggest to keep using the Bay e s i a n way (or other

1 6 3

n o r m a t i v e p r i n c i p l e s like the D e mpster rule or some kind of

fuzzy logic), because they work quite well. On the other

hand, as a c o g n i t i v e p s y c h o l o g i s t I must look for models

that in c o r p o r a t e these kinds of fallacies even if the

p e r f o r m a n c e of the ré s u l t i n g models is not optimal. Our

pre s e n t u n d e r s t a n d i n g about the human mental p r o cesses does

not afford b u i l d i n g really hu m a n - l i k e models of thinking.

II. Where does the mea n i n g reside?

In a summary manner, a general moral of the lessons of

nu m e r o u s e x p e r i m e n t s in c o g nitive p s y c h o l o g y sounds as

follows: the mea n i n g resides everywhere, at every level of

human i n f o r m a t i o n processing. IVe shall ' illustrate the

gen e r a l style of c o g n i t i v e ps y c h o l o g y e x p e r i m e n t s leading to

this moral by just one example. Suppose we flash a letter R

or a letter M on the display of the computer. The subject

has to push the but t o n at his/her right hand if he/she

p e r c e i v e s a letter R, and push the other button if a letter

M is perceived. The time of f l ashing the letter is

d e t e r m i n e d so that the ratio of correct re s p o n s e s be 60%.

(This m e ans that the subject must p e rceive a certain small

amount of i n f o r m a t i o n but not enough for a sure decision).

After that all the c i r c u m s t a n c e s remain the same but the

display image changes: either the word MAKE or the word RAKE

will be flashed. The subject has to tell the first letter of

•the word seen. U s u a l l y the ratio of correct answers

s i g n i f i c a n t l y inc r e a s e s in the second case. If a m e a n i n g l e s s

1 6 4

word is displayed, the hit ratio will not increase.

Perhaps the most important common point in AI and

c o g nitive p s y c h o l o g y researches is the effort to allocate

the point where the meaning appears. Both d isciplines try to

attack this problem, and the results converge in a nice

however may be d i s t r essing way. Cognitive p s y c hology

e x p e r i m e n t s de m o n s t r a t e that the meaning resides largely

everywhere, at every point of our thinking. AI results

d e m o n s t r a t e that the meaning does not reside at any given

point of the AI systems: neither at the links of the

semantic networks, nor in the sophisticated frame

structures, even not in any kinds of problem solving

heuristics. As Lenat and Brown put it when analysing why the

lovely and ef f i c i e n t AM and EURISKO programs appear to work:

"although the system in principle contains a complete

c h a r a c t e r i z a t i o n of what the o p e rators of the language mean

(the system has e n bedded within itself a repre s e n t a t i o n of

EVAL - a r e p r e s e n t a t i o n that is, in principle, modifi a b l e by

the system itself) the system n e v e r t h e l e s s contains no

theory as to what the data structures denote. Rather, ^

(the human observ e r s) attribute meaning to those

s t ructures."

III. The import of c o g nitive ps y c h o l o g y to AI

The concept of c o g nitive schema in cognitive p s y c hology

is much subtler than any of the a n a logous concepts in AI. A

co g n i t i v e schema is some m e a n ingful thing that is changing

1 6 5

all the time. It plays an active role in all phases of human

thinking, from p e r c e p t i o n to m e m o r i z i n g and pro b l e m solving.

As this con c e p t is that very soft, even s o mewhat vague, it

is very hard to tell whe t h e r such e ntities really exist in

our brain or not. Nevertheless, this con c e p t has helped in

des i g n i n g many ex p e r i m e n t s that led to a much deeper

u n d e r s t a n d i n g of human thinking m echanisms. On the other

hand, the concept of the c o g nitive schema is highly

intuitive, we cannot exp l i c a t e it in exact m a t h e m a t i c a l

terms. T h e refore this con c e p t pr e s e n t l y cannot be directly

mo d e l l e d in AI programs.

However, c o g nitive ps y c h o l o g y was able to give even some

q u a n t i t a t i v e es t i m a t e s about the number of cognitive

schemata, wh a t e v e r they be. It has been shown for example,

that a g r a n d m a s t e r of the most p r o f e s s i o n s masters some ten

t h o usands of c o g nitive schemata in his/her field. This

result can exp l a i n the ap p a r e n t s h o r t c o m i n g s of today's AI

programs: none of them con t a i n s that much s o p h isticated

c o g n i t i v e entities. A c o g n i t i v e schema is not just a memory

unit: the numb e r of d i s t i n c t memory units can be e s t imated

to 2-3 orders of m a g n i t u d e larger than the number of

c o g n i t i v e /schemata. It is p ossible that meaning resides

sim p l y in the c o m p l e x i t y that can be a f f o r d e d by the human

brain, and this c o m p l e x i t y perhaps can be me a s u r e d by the

q u a n t i t y of i n t e r r e l a t e d c o g n i t i v e s c hemata that change each

other all the time.

The g r eat c h a l l a n g e to both AI and c o g n i t i v e ps y c h o l o g y

is to find the way how the several mil l i o n s of memory units

1 6 6

are or g a n i z e d into some ten thousands of schemata in our

brain. This or g a n i z i n g principle may be largely different

from the commonly used computer architectures. Cognitive

p s y c h o l o g y has clearly d e m o n s t r a t e d some phenomena that are

pr e s e n t l y inexp l i c a b l e in c omputer terms. A simple example

is the ph e n o m e n o n of the c a pacity limits of the short term

memory. It is not clear why should a c o mputer model have a

c o n struct like short term memory at all, and once it has

one, why should it be so strongly limited if no engineering

reasons support this limitation. This way cognitive

ps y c h o l o g y offers some nice puzzles to solve for AI, and the

solution of these p r oblems may enhance our u n d erstanding

both about the proper ways of b u ilding intelligent systems

and about the working pr i n c i p l e s of human intelligence.

IV. The import of AI to cognitive psycho l o g y

The basic ob j e c t i v e s of c o g nitive p s y c hology has been to

find w e l l - w o r k i n g models of human co g n i t i o n and thinking.

The initial d e m o n s t r a t i v e successes of AI have also promised

a great b r e a k t h r o u g h for c o g nitive ps y c h o l o g y by offering

external, normative wor k i n g models that should only be

refined to reflect some funny human features. However, in

the last 30 years the initial e n t h u s i a s m has dissolved,

because AI models, as we have seen, are p r e sently not able

to catch the major f e atures of human thinking. To put it

cynically, from a c o g n i t i v e point of view: if an AI model is

w o r k i n g r e a s o n a b l y well, it cannot be co n s i d e r e d as

1 6 7

i n t elligent, and if an AI model can per h a p s be c o n s i d e r e d as

intelligent, it is not working well.

Less cynically, the results of AI have c o n t i n u o u s l y and

r a d i c a l l y cha n g e d our n otions about intelligence. Expert

systems or chess pro g r a m s are de f i n i t e l y wor k i n g quite well,

but their wor k i n g m e c h a n i s m s ra d i c a l l y differ from the human

thinking ways. On the other hand, s o p h i s t i c a t e d k n o t-like

structures, like W i n o g r a d ' s SHRDLL) may show some similar

features to human thinking, but their p e r f o r m a n c e seems to

be very limited, their wor k i n g pr i n c i p l e could not yet be

g e n e r a l i z e d to bro a d e r domains than toy blocks, etc.

A still more m e a n i n g f u l lesson of AI for c o g nitive

p s y c h o l o g y can be found in u n d e r s t a n d i n g the notion of

creativity. Chess programs, expert s ystems or e s p e c i a l l y

EUR I S K O produce u n e q u i v o c a l l y c r eative ideas wit h o u t being

i n t e l l i g e n t in the human sense. As Schank and Oehn put it,

the AI e x p e r i e n c e has thought us that c r e a t i v i t y may be just

an ext r e m e case of intel l i g e n c e , a special kind of memory

o r g a n i z a t i o n that is g e n e r a l l y c h a r a c t e r i s t i c to those

people who are usu a l l y c o n s i d e r e d in t e l l i g e n t by other

people. The app a r e n t c r e a t i v i t y of AI pr o g r a m s totally

lacking any real i n t e l l i g e n c e may help us to d i ssolve the

myth of c reativity.

1 6 8

Biblio g r a p h y

To Section I.

Cherniak, C. (198á). Minimal Rationality. The MIT Press.

Einhorn, H. J., Hogarth, R. M. (1986). Judging probable

cause. P s y c h o l o g i c a l Bullentin 99. 3-19.

Goldman, A. I. (1986). Episte m o l o g y and Cognition. Harvard

U n i v ersity Press.

J o h n s o n - L a i r d , P. N. (1983). Mental models. Cambridge

U n i v ersity Press.

Kahneman, D., Slovic, P., Tversky, A. (ed., 1982). Judgement

under u n c e r t a i n i t y : Heuris t i c s and biases. Cambridge

Nisbett, R., Ross, L. (1980). Human Inference.

Prentice-Hall.

Rips, L. (1983). C o g nitive pr o c e s s e s in reasoning.

Psycho l o g i c a l Review 90. 38-71.

Zajonc, R. 8. (1980). Feeling and thinking: P r e f e rences need

no inferences. A merican P s y c h o l o g i s t 35. 151-175.

To Section II.

Anderson, J. R. (1984). Cognitive Psychology. Artificial

I n t elligence 23. 1-11.

Lenat, D. 8., Brown, J. S. (1984). Why AM and EURISKO appear

to work. Artificial Intell i g e n c e 25. 269-294.

Mérő L. (1984). A h e u r i s t i c search a l g o r i t h m with modifi a b l e

estimate. Artifi c i a l intell i g e n c e 23. 13-27.

Searle, J. (1980). Minds, brains and programs. The

Behavi o r a l and Brain Sciences. 3. 417-457.

Standing, L. (1973). L e arning 10,000 pictures. Q u a rterly

1 6 9

Journal of E x p e r i m e n t a l Psychology. 25. 207-222.

Wheeler, D. 0. (1970). Process in word recognition.

Cognitive P s y c h o l o g y 1. 59-85.

To Section III.

Cermak, L. S., Craik, F. I. M. (ed., 1979). Levels of

p r o c e s s i n g in human memory. Erlbaum.

Gardner, H. (1985). Frames of mind. Heinemann, London.

Landauer, T. K. (1986). How much do people r e m ember? Some

es t i m a t e s of the q u antity of learned i n f o r mation in long

term memory. Co g n i t i v e Science 10. 477-493.

Mérő L. (1984). H e u r i s z t i k u s el j á r á s o k a mester s é g e s

int e l l i g e n c i á b a n . P s z i c h o l ó g i a 4. 241-259.

Schank, R. C. (1979). I n t e r e s t i n g n e s s : C ontrolling

inferences. A r t i f i c i a l Intell i g e n c e 18. 273-297.

To Section IV.

Cherniak, C. (1988). U n d e b u g g a b i l i t y and c o mputer science.

C o m m u n i c a t i o n s of the ACM 31. 402-412.

Dreyfus, H. L., Dreyfus, S. E. (1986). Mind over machine.

The Free Press.

Hidi, S., Baird, W. (1986). I n t e r e s t i n g n e s s - A n e g lected

v a riable in di s c o u r s e processing. Co g n i t i v e Sciences 10.

179-194.

Sternberg, R. J. (1982). Handbook of human intelligence.

Ca m b r i d g e U n i v e r s i t y Press.

Vernon, P. E. (1970). Creativity. Penguin Mode r n Ps y c h o l o g y

R e a d i n g s .

Winograd, T. (1980). L anguage as a c o g n i t i v e process.

A d d i s o n - W e s l e y .

170

á

■ 'm

'■4

